\[(0)(1,1,1) = \psi(\W_\w) = \text{BO}\] \[(0)(1,1,1)(1) = \psi(\W_\w+1)\] \[(0)(1,1,1)(1)(2,1,1) = \psi(\W_\w+\psi(\W_\w))\] \[(0)(1,1,1)(1,1) = \psi(\W_\w+\W)\] \[(0)(1,1,1)(1,1)(2,2) = \psi(\W_\w+\psi_1(\W_2))\] \[(0)(1,1,1)(1,1)(2,2,1) = \psi(\W_\w+\psi_1(\W_\w))\] \[(0)(1,1,1)(1,1)(2,2,1)(2) = \psi(\W_\w+\psi_1(\W_\w+1))\] \[(0)(1,1,1)(1,1)(2,2,1)(2,1) = \psi(\W_\w+\psi_1(\W_\w+\w))\] \[(0)(1,1,1)(1,1)(2,2,1)(2,1)(3,2) = \psi(\W_\w+\psi_1(\W_\w+\psi_1(\W_2)))\] \[(0)(1,1,1)(1,1)(2,2,1)(2,1)(3,2,1) = \psi(\W_\w+\psi_1(\W_\w+\psi_1(\W_\w)))\] \[(0)(1,1,1)(1,1)(2,2,1)(2,1)(3,2,1)(3,1) = \psi(\W_\w+\psi_1(\W_\w+\psi_1(\W_\w+\W)))\] \[(0)(1,1,1)(1,1)(2,2,1)(2,2) = \psi(\W_\w+\W_2)\] \[(0)(1,1,1)(1,1)(2,2,1)(2,2)(2,2) = \psi(\W_\w+\W_2 2)\] \[(0)(1,1,1)(1,1)(2,2,1)(2,2)(3,3) = \psi(\W_\w+\psi_2(\W_3))\] \[(0)(1,1,1)(1,1)(2,2,1)(2,2)(3,3,1) = \psi(\W_\w+\psi_2(\W_\w))\] \[(0)(1,1,1)(1,1)(2,2,1)(2,2)(3,3,1)(3,3) = \psi(\W_\w+\W_3)\] \[(0)(1,1,1)(1,1,1) = \psi(\W_\w 2)\] \[(0)(1,1,1)(1,1,1)(1,1)(2,2,1)(2,2,1) = \psi(\W_\w 2+\psi_1(\W_\w 2))\] \[(0)(1,1,1)(1,1,1)(1,1,1) = \psi(\W_\w 3)\] \[(0)(1,1,1)(2) = \psi(\W_\w \w)\] \[(0)(1,1,1)(2)(1,1)(2,2,1)(3) = \psi(\W_\w \w+\psi_1(\W_\w \w))\] \[(0)(1,1,1)(2)(1,1)(2,2,1)(3)(2,2)(3,3,1)(4) = \psi(\W_\w \w+\psi_2(\W_\w \w))\]

\[(0)(1,1,1)(2)(1,1,1) = \psi(\W_\w\m(\w+1))\] \((0)(1,1,1)(2)(1,1,1)\)在展开的过程中第三列\((2,0,0)\)的第二行不能+1,否则会引发无穷降链。 \[(0)(1,1,1)(2)(1,1,1)(2) = \psi(\W_\w\w2)\] \[(0)(1,1,1)(2)(2) = \psi(\W_\w\w^2)\] \[(0)(1,1,1)(2)(3) = \psi(\W_\w\w^\w)\] \[(0)(1,1,1)(2)(3,1,1) = \psi(\W_\w\psi(\W_\w))\]

$\Delta$ successor-based 提升效应

\[(0)(1,1,1)(2,1) = \psi(\W_\w\W)\] 接下来是提升效应。\((0)(1,1,1)(2,1)(1,1,1)\ne\psi(\W_\w\W+\W_\w)\)。 \[(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,1) = \psi(\W_\w\W+\psi_1(\W_w\W))\] \[(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,1)(2,2)(3,3,1)(4,1) = \psi(\W_\w\W+\psi_2(\W_w\W))\] \[(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,1){\color{Yellow} (2,2,1)} = \psi(\W_\w\W+\W_\w)\] 由于特殊规则的存在,这里黄色的(2,2,1),不会将(3,1)的第二行+\(\Delta\)。 \[(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,1){\color{Yellow} (2,2,1)(2,2,1)} = \psi(\W_\w\W+\W_\w 2)\] \[(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,1){\color{Yellow} (2,2,1)(3,1)} = \psi(\W_\w\W2)\] \[(0)(1,1,1)(2,1)(1,1){\color{Yellow} (2,2,1)(3,1)(4,2)} = \psi(\W_\w\psi_1(\W_2))\] \[(0)(1,1,1)(2,1)(1,1){\color{Yellow} (2,2,1)(3,1)(4,2,1)} = \psi(\W_\w\psi_1(\W_\w))\] \[(0)(1,1,1)(2,1)(1,1){\color{Yellow} (2,2,1)(3,1)(4,2,1)(5,1)} = \psi(\W_\w\psi_1(\W_\w\W))\] \[(0)(1,1,1)(2,1)(1,1){\color{Yellow} (2,2,1)(3,1)(4,2,1)(5,1)(6,2,1)} = \psi(\W_\w\psi_1(\W_\w\psi_1(\W_\w)))\]

\[(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,2) = \psi(\W_\w\W_2)\] \[(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,2)(2,2)(3,3,1)(4,2,1){\color{Yellow} (3,3,1)} = \psi(\W_\w\W_2+\W_\w)\] \[(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,2)(2,2){\color{Yellow} (3,3,1)(4,2,1)(5,2)(6,3)} = \psi(\W_\w\psi_2(\W_3))\] \[(0)(1,1,1)(2,1)(1,1)(2,2,1)(3,2)(2,2)(3,3,1)(4,2,1)(5,3) = \psi(\W_\w\W_3)\] 于是我们得到了 \[(0)(1,1,1)(2,1)(1,1,1) = \psi(\W_\w^2)\] \[(0)(1,1,1)(2,1)(1,1,1)(1,1)(2,2,1)(3,2) = \psi(\W_\w^2+\psi_1(\W_\w\W_2))\] \[(0)(1,1,1)(2,1)(1,1,1)(1,1)(2,2,1)(3,2)(2,2,1) = \psi(\W_\w^2+\psi_1(\W_\w^2))\] \[(0)(1,1,1)(2,1)(1,1,1)(1,1)(2,2,1)(3,2)(2,2,1)(2,2)(3,3,1)(4,3)(3,3,1) = \psi(\W_\w^2+\psi_2(\W_\w^2))\]’ \(\W\w\W_n\)被多出的(1,1,1)-like提升了,因此后续+(1,1,1)的结果不会引发提升效应。 \[(0)(1,1,1)(2,1)(1,1,1)(1,1,1) = \psi(\W\w^2+\W\w)\] \[(0)(1,1,1)(2,1)(1,1,1)(2,1) = \psi(\W\w^2 +\W\w\W)\] \[(0)(1,1,1)(2,1)(1,1,1)(2,1)(1,1,1) = \psi(\W\w^2 2)\] \[(0)(1,1,1)(2,1)(1,1,1)(2,1)(1,1,1)(2,1)(1,1,1) = \psi(\W_\w^2 3)\] \[(0)(1,1,1)(2,1)(2) = \psi(\W_\w^2 \w)\] \[(0)(1,1,1)(2,1)(2,1) = \psi(\W_\w^2 \W)\] \[(0)(1,1,1)(2,1)(2,1)(1,1)(2,2,1)(3,2) = \psi(\W_\w^2 \W+\psi_1(\W_\w\W_2))\] \[(0)(1,1,1)(2,1)(2,1)(1,1)(2,2,1)(3,2)(2,2,1) = \psi(\W_\w^2 \W+\psi_1(\W_\w^2))\] \[(0)(1,1,1)(2,1)(2,1)(1,1)(2,2,1)(3,2)(3,1) = \psi(\W_\w^2 \W+\psi_1(\W_\w^2\W))\] \[(0)(1,1,1)(2,1)(2,1)(1,1)(2,2,1)(3,2)(3,1){\color{Yellow} (2,2,1)} = \psi(\W_\w^2 \W+\W_\w)\] 由于特殊规则的存在,这里黄色的(2,2,1),也不会将(3,1)的第二行+\(\Delta\)。 \[(0)(1,1,1)(2,1)(2,1)(1,1)(2,2,1)(3,2)(3,2) = \psi(\W_\w^2 \W_2)\] \[(0)(1,1,1)(2,1)(2,1)(1,1,1) = \psi(\W_\w^3)\] \[(0)(1,1,1)(2,1)(2,1)(1,1,1)(1,1,1) = \psi(\W_\w^3+\W_\w)\] \[(0)(1,1,1)(2,1)(2,1)(1,1,1)(2,1) = \psi(\W_\w^3+\W_\w\W)\] \[(0)(1,1,1)(2,1)(2,1)(1,1,1)(2,1)(2,1) = \psi(\W_\w^3+\W_\w^2\W)\] \[(0)(1,1,1)(2,1)(2,1)(2) = \psi(\W_\w^3 \w)\] \[(0)(1,1,1)(2,1)(2,1)(2,1) = \psi(\W_\w^3 \W)\] \[(0)(1,1,1)(2,1)(2,1)(2,1)(1,1,1) = \psi(\W_\w^4)\] \[(0)(1,1,1)(2,1)(3) = \psi(\W_\w^\w)\] \[(0)(1,1,1)(2,1)(3)(2,1) = \psi(\W_\w^\w \W)\] \[(0)(1,1,1)(2,1)(3)(2,1)(1,1,1) = \psi(\W_\w^{\w+1})\] \[(0)(1,1,1)(2,1)(3)(2,1)(2,1)(1,1,1) = \psi(\W_\w^{\w+2})\] \[(0)(1,1,1)(2,1)(3)(2,1)(3) = \psi(\W_\w^{\w2})\] \[(0)(1,1,1)(2,1)(3)(3) = \psi(\W_\w^{\w^2})\] \[(0)(1,1,1)(2,1)(3)(4) = \psi(\W_\w^{\w^\w})\] \[(0)(1,1,1)(2,1)(3,1) = \psi(\W_\w^{\W})\] 这里又是一次提升效应,(3,1)后+(1,1,1),展开的过程变成了(4,2),(5,3),(6,4),… \[(0)(1,1,1)(2,1)(3,1)(1,1)(2,2,1)(3,2) = \psi(\W_\w^{\W}+\psi_1(\W_\w\W))\] \[(0)(1,1,1)(2,1)(3,1)(1,1)(2,2,1)(3,2)(4,1) = \psi(\W_\w^{\W}+\psi_1(\W_\w^{\W}))\] \[(0)(1,1,1)(2,1)(3,1)(1,1)(2,2,1)(3,2)(4,1)(2,2,1) = \psi(\W_\w^{\W}+\W_\w)\] \[(0)(1,1,1)(2,1)(3,1)(1,1)(2,2,1)(3,2)(4,1)(2,2,1)(3,2) = \psi(\W_\w^{\W}+\W_\w\W_2)\] \[(0)(1,1,1)(2,1)(3,1)(1,1)(2,2,1)(3,2)(4,1)(2,2,1)(3,2)(4,1) = \psi(\W_\w^{\W}2)\] \[(0)(1,1,1)(2,1)(3,1)(1,1)(2,2,1)(3,2)(4,1)(3) = \psi(\W_\w^{\W}\w)\] \[(0)(1,1,1)(2,1)(3,1)(1,1)(2,2,1)(3,2)(4,1)(3,1) = \psi(\W_\w^{\W}\W)\] \[(0)(1,1,1)(2,1)(3,1)(1,1)(2,2,1)(3,2)(4,1)(3,1)(2,2,1) = \psi(\W_\w^{\W+1})\] \[(0)(1,1,1)(2,1)(3,1)(1,1)(2,2,1)(3,2)(4,1)(3,1)(3,1)(2,2,1) = \psi(\W_\w^{\W+2})\] \[(0)(1,1,1)(2,1)(3,1)(1,1)(2,2,1)(3,2)(4,1)(3,1)(4,1) = \psi(\W_\w^{\W2})\] \[(0)(1,1,1)(2,1)(3,1)(1,1)(2,2,1)(3,2)(4,1)(5,2) = \psi(\W_\w^{\psi_1(\W_2)})\] \[(0)(1,1,1)(2,1)(3,1)(1,1)(2,2,1)(3,2)(4,2) = \psi(\W_\w^{\W_2})\] \[(0)(1,1,1)(2,1)(3,1)(1,1,1) = \psi(\W_\w^{\W_\w})\] \[(0)(1,1,1)(2,1)(3,1)(2,1)(1,1,1)= \psi(\W_\w^{\W_\w+1})\] \[(0)(1,1,1)(2,1)(3,1)(2,1)(3,1)(1,1,1)= \psi(\W_\w^{\W_\w 2})\] \[(0)(1,1,1)(2,1)(3,1)(2,1)(3,1)(2,1)(3,1)(1,1,1)= \psi(\W_\w^{\W_\w 3})\] \[(0)(1,1,1)(2,1)(3,1)(3,1)(1,1,1)= \psi(\W_\w^{\W_\w^2})\] \[(0)(1,1,1)(2,1)(3,1)(4,1)(1,1,1)= \psi(\W_\w^{\W_\w^{\W_\w}})\] \[(0)(1,1,1)(2,1)(3,2)= \psi(\W_{\w+1}) = \text{TFBO}\] \[(0)(1,1,1)(2,1)(3,2)(1,1,1)(2,1)(3,2)= \psi(\W_{\w+1}+\psi_{\w}(\W_{\w+1}))\] \[(0)(1,1,1)(2,1)(3,2)(2)= \psi(\W_{\w+1}+\psi_{\w}(\W_{\w+1} +1))\] \[(0)(1,1,1)(2,1)(3,2)(2,1)= \psi(\W_{\w+1}+\psi_{\w}(\W_{\w+1} +\W))\] \[(0)(1,1,1)(2,1)(3,2)(2,1)(1,1,1)= \psi(\W_{\w+1}+\psi_{\w}(\W_{\w+1} +\W_\w))\] \[(0)(1,1,1)(2,1)(3,2)(2,1)(1,1,1)(2,1)(3,2)= \psi(\W_{\w+1}+\psi_{\w}(\W_{\w+1} +\W_\w)+\psi_{\w}(\W_{\w+1}))\] \[(0)(1,1,1)(2,1)(3,2)(2,1)(2)= \psi(\W_{\w+1}+\psi_{\w}(\W_{\w+1} +\W_\w+1))\] \[(0)(1,1,1)(2,1)(3,2)(2,1)(2,1)= \psi(\W_{\w+1}+\psi_{\w}(\W_{\w+1} +\W_\w+\W))\] \[(0)(1,1,1)(2,1)(3,2)(2,1)(2,1)(1,1,1)= \psi(\W_{\w+1}+\psi_{\w}(\W_{\w+1} +\W_\w 2))\] \[(0)(1,1,1)(2,1)(3,2)(2,1)(3,1)= \psi(\W_{\w+1}+\psi_{\w}(\W_{\w+1} +\W_\w \W))\] \[(0)(1,1,1)(2,1)(3,2)(2,1)(3,2)= \psi(\W_{\w+1}+\psi_{\w}(\W_{\w+1} +\psi_{\w}(\W_{\w+1})))\] \[(0)(1,1,1)(2,1)(3,2)(3)= \psi(\W_{\w+1}+\psi_{\w}(\W_{\w+1} +\psi_{\w}(\W_{\w+1}+1)))\] \[(0)(1,1,1)(2,1)(3,2)(3,1)= \psi(\W_{\w+1}+\psi_{\w}(\W_{\w+1} +\psi_{\w}(\W_{\w+1}+\W)))\] \[(0)(1,1,1)(2,1)(3,2)(3,1)(1,1,1)= \psi(\W_{\w+1}+\psi_{\w}(\W_{\w+1} +\psi_{\w}(\W_{\w+1}+\W_\w)))\] \[(0)(1,1,1)(2,1)(3,2)(3,1)(3,1)= \psi(\W_{\w+1}+\psi_{\w}(\W_{\w+1} +\psi_{\w}(\W_{\w+1}+\W_\w+\W)))\] \[(0)(1,1,1)(2,1)(3,2)(3,1)(4)= \psi(\W_{\w+1}+\psi_{\w}(\W_{\w+1} +\psi_{\w}(\W_{\w+1}+\W_\w\w)))\] \[(0)(1,1,1)(2,1)(3,2)(3,1)(4,1)= \psi(\W_{\w+1}+\psi_{\w}(\W_{\w+1} +\psi_{\w}(\W_{\w+1}+\W_\w\W)))\] \[(0)(1,1,1)(2,1)(3,2)(3,1)(4,2)= \psi(\W_{\w+1}+\psi_{\w}(\W_{\w+1} +\psi_{\w}(\W_{\w+1}+\psi_{\w}(\W_{\w+1}))))\] \[(0)(1,1,1)(2,1)(3,2)(3,1)(4,2)(4)= \psi(\W_{\w+1}+\psi_{\w}(\W_{\w+1} +\psi_{\w}(\W_{\w+1}+\psi_{\w}(\W_{\w+1}+1))))\] \[(0)(1,1,1)(2,1)(3,2)(3,1)(4,2)(4,1)(5,2)= \psi(\W_{\w+1}+\psi_{\w}(\W_{\w+1} +\psi_{\w}(\W_{\w+1}+\psi_{\w}(\W_{\w+1}+\psi_{\w}(\W_{\w+1})))))\] \[(0)(1,1,1)(2,1)(3,2)(3,2)= \psi(\W_{\w+1}2)\] \[(0)(1,1,1)(2,1)(3,2)(3,2)(3,1)(4,2)(4,2)= \psi(\W_{\w+1}2+\psi_{\w}(\W_{\w+1}2+\psi_{\w}(\W_{\w+1}2+\psi_{\w}(\W_{\w+1}2))))\] \[(0)(1,1,1)(2,1)(3,2)(3,2)(3,2)= \psi(\W_{\w+1}3)\] \[(0)(1,1,1)(2,1)(3,2)(4)= \psi(\W_{\w+1}\w)\] \[(0)(1,1,1)(2,1)(3,2)(4,1)= \psi(\W_{\w+1}\W)\] \[(0)(1,1,1)(2,1)(3,2)(4,1)(1,1,1)= \psi(\W_{\w+1}\W_\w)\] \[(0)(1,1,1)(2,1)(3,2)(4,1)(3,2)= \psi(\W_{\w+1}\m(\W_\w+1))\] \[(0)(1,1,1)(2,1)(3,2)(4,1)(3,2)(4,1)= \psi(\W_{\w+1}\m(\W_\w+\W))\] \[(0)(1,1,1)(2,1)(3,2)(4,1)(4,1)= \psi(\W_{\w+1}\W_\w\W)\] \[(0)(1,1,1)(2,1)(3,2)(4,1)(5,2)= \psi(\W_{\w+1}\psi_\w(\W_{\w+1}))\] \[(0)(1,1,1)(2,1)(3,2)(4,2)= \psi(\W_{\w+1}^2)\] \[(0)(1,1,1)(2,1)(3,2)(4,2)(3,2)= \psi(\W_{\w+1}^2+\W_{\w+1})\] \[(0)(1,1,1)(2,1)(3,2)(4,2)(3,2)(4,2)= \psi(\W_{\w+1}^2+\W_{\w+1}^2)\] \[(0)(1,1,1)(2,1)(3,2)(4,2)(4,2)= \psi(\W_{\w+1}^3)\] \[(0)(1,1,1)(2,1)(3,2)(4,2)(5)= \psi(\W_{\w+1}^\w)\] \[(0)(1,1,1)(2,1)(3,2)(4,2)(5,1)= \psi(\W_{\w+1}^{\W})\] \[(0)(1,1,1)(2,1)(3,2)(4,2)(5,1)(1,1,1)= \psi(\W_{\w+1}^{\W_\w})\] \[(0)(1,1,1)(2,1)(3,2)(4,2)(5,1)(5,1)= \psi(\W_{\w+1}^{\W_\w+\W})\] \[(0)(1,1,1)(2,1)(3,2)(4,2)(5,1)(6,2)= \psi(\W_{\w+1}^{\psi_\w(\W_{\w+1})})\] \[(0)(1,1,1)(2,1)(3,2)(4,2)(5,2)= \psi(\W_{\w+1}^{\W_{\w+1}})\] \[(0)(1,1,1)(2,1)(3,2)(4,3)= \psi(\W_{\w+2})\] \[(0)(1,1,1)(2,1)(3,2)(4,3)(5,3)(6,3)= \psi(\W_{\w+2}^{\W_{\w+2}})\] \[(0)(1,1,1)(2,1)(3,2)(4,3)(5,4)= \psi(\W_{\w+3})\] \[(0)(1,1,1)(2,1)(3,2,1)= \psi(\W_{\w2})\] \[(0)(1,1,1)(2,1)(3,2,1)(1,1,1)(2,1)(3,2,1)= \psi(\W_{\w2}+\psi_\w(\W_{\w2}))\] \[(0)(1,1,1)(2,1)(3,2,1)(2,1)= \psi(\W_{\w2}+\psi_\w(\W_{\w2}+\W))\] \[(0)(1,1,1)(2,1)(3,2,1)(2,1)(3,1)= \psi(\W_{\w2}+\psi_\w(\W_{\w2}+\W_\w\W))\] \[(0)(1,1,1)(2,1)(3,2,1)(2,1)(3,2)= \psi(\W_{\w2}+\psi_\w(\W_{\w2}+\psi_\w(\W_{\w+1})))\] \[(0)(1,1,1)(2,1)(3,2,1)(2,1)(3,2,1)= \psi(\W_{\w2}+\psi_\w(\W_{\w2}+\psi_\w(\W_{\w2})))\] \[(0)(1,1,1)(2,1)(3,2,1)(3)= \psi(\W_{\w2}+\psi_\w(\W_{\w2}+\psi_\w(\W_{\w2}+1)))\] \[(0)(1,1,1)(2,1)(3,2,1)(3,2)= \psi(\W_{\w2}+\W_{\w+1})\] \[(0)(1,1,1)(2,1)(3,2,1)(3,2)(4,3)= \psi(\W_{\w2}+\psi_{\w+1}(\W_{\w+2}))\] \[(0)(1,1,1)(2,1)(3,2,1)(3,2)(4,3,1)= \psi(\W_{\w2}+\psi_{\w+1}(\W_{\w2}))\] 错层 \[(0)(1,1,1)(2,1)(3,2,1)(3,2)(4,3,1)(4,3)= \psi(\W_{\w2}+\W_{\w+1})\] \[(0)(1,1,1)(2,1)(3,2,1)(3,2)(4,3,1)(4,3)(5,4,1)= \psi(\W_{\w2}+\psi_{\w+1}(\W_{\w2}))\] \[(0)(1,1,1)(2,1)(3,2,1)(3,2)(4,3,1)(4,3)(5,4,1)(5,4)(6,5,1)= \psi(\W_{\w2}+\psi_{\w+2}(\W_{\w2}))\] \[(0)(1,1,1)(2,1)(3,2,1)(3,2,1)= \psi(\W_{\w2}2)\] \[(0)(1,1,1)(2,1)(3,2,1)(4)= \psi(\W_{\w2}\w)\] \[(0)(1,1,1)(2,1)(3,2,1)(4,1)= \psi(\W_{\w2}\W)\] \[(0)(1,1,1)(2,1)(3,2,1)(4,1)(1,1,1)= \psi(\W_{\w2}\W_\w)\] \[(0)(1,1,1)(2,1)(3,2,1)(4,1)(3,2)= \psi(\W_{\w2}\W_\w+\W_{\w+1})\] \[(0)(1,1,1)(2,1)(3,2,1)(4,1)(3,2,1)= \psi(\W_{\w2}(\W_\w+1))\] \[(0)(1,1,1)(2,1)(3,2,1)(4,1)(3,2,1)(4,1)= \psi(\W_{\w2}(\W_\w+\W))\] \[(0)(1,1,1)(2,1)(3,2,1)(4,1)(3,2,1)(4,1)(3,2,1)(4,1)= \psi(\W_{\w2}(\W_\w2+\W))\] \[(0)(1,1,1)(2,1)(3,2,1)(4,1)(4)= \psi(\W_{\w2}\W_\w\w)\] \[(0)(1,1,1)(2,1)(3,2,1)(4,1)(4,1)= \psi(\W_{\w2}\W_\w\W)\] \[(0)(1,1,1)(2,1)(3,2,1)(4,1)(5,2)= \psi(\W_{\w2}\psi_\w(\W_{\w+1}))\] \[(0)(1,1,1)(2,1)(3,2,1)(4,1)(5,2,1)= \psi(\W_{\w2}\psi_\w(\W_{\w2}))\] \[(0)(1,1,1)(2,1)(3,2,1)(4,1)(5,2,1)(6,1)= \psi(\W_{\w2}\psi_\w(\W_{\w2}\W))\] \[(0)(1,1,1)(2,1)(3,2,1)(4,1)(5,2,1)(6,1)(7,2,1)= \psi(\W_{\w2}\psi_\w(\W_{\w2}\psi_\w(\W_{\w2})))\] \[(0)(1,1,1)(2,1)(3,2,1)(4,2)= \psi(\W_{\w2}\W_{\w+1})\] 新提升效应 \[(0)(1,1,1)(2,1)(3,2,1)(4,2)(3,2)= \psi(\W_{\w2}\W_{\w+1}+\W_{\w+1})\] \[(0)(1,1,1)(2,1)(3,2,1)(4,2)(3,2)(4,3,1)(5,2)= \psi(\W_{\w2}\W_{\w+1}+\psi_{\w+1}(\W_{\w2}\W_{\w+1}))\] \[(0)(1,1,1)(2,1)(3,2,1)(4,2)(3,2)(4,3,1)(5,2){\color{Yellow} (4,3,1)}= \psi(\W_{\w2}\W_{\w+1}+\W_{\w2})\] \[(0)(1,1,1)(2,1)(3,2,1)(4,2)(3,2)(4,3,1)(5,2){\color{Yellow} (4,3,1)(5,2)}= \psi(\W_{\w2}\W_{\w+1}2)\] \[(0)(1,1,1)(2,1)(3,2,1)(4,2)(3,2){\color{Yellow} (4,3,1)(5,2)(5)}= \psi(\W_{\w2}\W_{\w+1}\w)\] \[(0)(1,1,1)(2,1)(3,2,1)(4,2)(3,2){\color{Yellow} (4,3,1)(5,2)(6,3)}= \psi(\W_{\w2}\psi_{\w+1}(\W_{\w+2}))\] \[(0)(1,1,1)(2,1)(3,2,1)(4,2)(3,2){\color{Yellow} (4,3,1)(5,2)(6,3,1)}= \psi(\W_{\w2}\psi_{\w+1}(\W_{\w2}))\] \[(0)(1,1,1)(2,1)(3,2,1)(4,2)(3,2)(4,3,1)(5,3)= \psi(\W_{\w2}\W_{\w+2})\] \[(0)(1,1,1)(2,1)(3,2,1)(4,2)(3,2,1)= \psi(\W_{\w2}^2)\] \[(0)(1,1,1)(2,1)(3,2,1)(4,2)(3,2,1)(3,2,1)= \psi(\W_{\w2}^2+\W_{\w2})\] \[(0)(1,1,1)(2,1)(3,2,1)(4,2)(4,2)= \psi(\W_{\w2}^2\W_{\w+1})\] \[(0)(1,1,1)(2,1)(3,2,1)(4,2)(4,2)(3,2,1)= \psi(\W_{\w2}^3)\] \[(0)(1,1,1)(2,1)(3,2,1)(4,2)(5)= \psi(\W_{\w2}^\w)\] \[(0)(1,1,1)(2,1)(3,2,1)(4,2)(5,2)= \psi(\W_{\w2}^{\W_{\w+1}})\] \[(0)(1,1,1)(2,1)(3,2,1)(4,2)(5,2)(3,2,1)= \psi(\W_{\w2}^{\W_{\w2}})\] \[(0)(1,1,1)(2,1)(3,2,1)(4,2)(5,3)= \psi(\W_{\w2+1})\] \[(0)(1,1,1)(2,1)(3,2,1)(4,2)(5,3)(3,2,1)= \psi(\W_{\w2+1}+\W_{\w2})\] \[(0)(1,1,1)(2,1)(3,2,1)(4,2)(5,3)(3,2,1)(4,2)(5,3)= \psi(\W_{\w2+1}+\psi_{\w2}(\W_{\w2+1}))\] \[(0)(1,1,1)(2,1)(3,2,1)(4,2)(5,3)(4)= \psi(\W_{\w2+1}+\psi_{\w2}(\W_{\w2+1}+1))\] \[(0)(1,1,1)(2,1)(3,2,1)(4,2)(5,3)(4,2)= \psi(\W_{\w2+1}+\psi_{\w2}(\W_{\w2+1}+\W_{\w+1}))\] \[(0)(1,1,1)(2,1)(3,2,1)(4,2)(5,3)(4,2)(3,2,1)= \psi(\W_{\w2+1}+\psi_{\w2}(\W_{\w2+1}+\W_{\w2}))\] \[(0)(1,1,1)(2,1)(3,2,1)(4,2)(5,3)(4,2)(3,2,1)= \psi(\W_{\w2+1}+\psi_{\w2}(\W_{\w2+1}+\W_{\w2}))\] \[(0)(1,1,1)(2,1)(3,2,1)(4,2)(5,3)(4,2)(4,2)= \psi(\W_{\w2+1}+\psi_{\w2}(\W_{\w2+1}+\W_{\w2}+\W_{\w+1}))\] \[(0)(1,1,1)(2,1)(3,2,1)(4,2)(5,3)(4,2)(5,3)= \psi(\W_{\w2+1}+\psi_{\w2}(\W_{\w2+1}+\psi_{\w2}(\W_{\w2+1})))\] \[(0)(1,1,1)(2,1)(3,2,1)(4,2)(5,3)(5)= \psi(\W_{\w2+1}+\psi_{\w2}(\W_{\w2+1}+\psi_{\w2}(\W_{\w2+1}+1)))\] \[(0)(1,1,1)(2,1)(3,2,1)(4,2)(5,3)(5,2)= \psi(\W_{\w2+1}+\psi_{\w2}(\W_{\w2+1}+\psi_{\w2}(\W_{\w2+1}+\W_{\w+1})))\] \[(0)(1,1,1)(2,1)(3,2,1)(4,2)(5,3)(5,3)= \psi(\W_{\w2+1}2)\] \[(0)(1,1,1)(2,1)(3,2,1)(4,2)(5,3)(6,4)= \psi(\W_{\w2+2})\] \[(0)(1,1,1)(2,1)(3,2,1)(4,2)(5,3,1)= \psi(\W_{\w3})\] \[(0)(1,1,1)(2,1)(3,2,1)(4,2)(5,3,1)(6,4)= \psi(\W_{\w3+1})\]

Upgrade chain

\[(0)(1,1,1)(2,1,1)= \psi(\W_{\w^2})\] \[(0)(1,1,1)(2,1,1)(1,1,1)= \psi(\W_{\w^2}+\W_\w)\] \[(0)(1,1,1)(2,1,1)(1,1,1)(2,1)(3,2)= \psi(\W_{\w^2}+\psi_\w(\W_{\w+1}))\] \[(0)(1,1,1)(2,1,1)(1,1,1)(2,1)(3,2,1)= \psi(\W_{\w^2}+\psi_\w(\W_{\w2}))\] \[(0)(1,1,1)(2,1,1)(1,1,1)(2,1)(3,2,1)(4,2,1)= \psi(\W_{\w^2}+\psi_\w(\W_{\w^2}))\] \[(0)(1,1,1)(2,1,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(3,2,1)= \psi(\W_{\w^2}+\W_{\w2})\] \[(0)(1,1,1)(2,1,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(3,2,1)(4,2)= \psi(\W_{\w^2}+\psi_{\w2}(\W_{\w2}\W_{\w+1}))\] \[(0)(1,1,1)(2,1,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(3,2,1)(4,2)(5,3)= \psi(\W_{\w^2}+\psi_{\w2}(\W_{\w2+1}))\] \[(0)(1,1,1)(2,1,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(3,2,1)(4,2)(5,3,1)= \psi(\W_{\w^2}+\psi_{\w2}(\W_{\w3}))\] \[(0)(1,1,1)(2,1,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(3,2,1)(4,2)(5,3,1)(6,3,1)(5,3,1)= \psi(\W_{\w^2}+\W_{\w3})\] \[(0)(1,1,1)(2,1,1)(1,1,1)(2,1,1)= \psi(\W_{\w^2}2)\] \[(0)(1,1,1)(2,1,1)(1,1,1)(2,1,1)(1,1,1)(2,1,1)= \psi(\W_{\w^2}3)\] \[(0)(1,1,1)(2,1,1)(2)= \psi(\W_{\w^2}\w)\] \[(0)(1,1,1)(2,1,1)(2,1)= \psi(\W_{\w^2}\W)\] \[(0)(1,1,1)(2,1,1)(2,1)(1,1,1)= \psi(\W_{\w^2}\W_\w)\] 提升链效应😰😰😰😰 \[(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(1,1,1)= \psi(\W_{\w^2}\W_\w+\W_\w)\] \[(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1)= \psi(\W_{\w^2}\W_\w+\W_\w\W)\] \[(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1)(3,2,1)= \psi(\W_{\w^2}\W_\w+\psi_\w(\W_{\w2}))\] \[(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1)(3,2,1)(4,2,1)= \psi(\W_{\w^2}\W_\w+\psi_\w(\W_{\w^2}))\] \[(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(2,1)= \psi(\W_{\w^2}\W_\w+\psi_\w(\W_{\w^2}+\W))\] \[(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(3,2)= \psi(\W_{\w^2}\W_\w+\psi_\w(\W_{\w^2}+\W_{\w+1}))\] \[(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(3,2,1)= \psi(\W_{\w^2}\W_\w+\psi_\w(\W_{\w^2}+\W_{\w2}))\] \[(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(3,2,1)(4,2,1)= \psi(\W_{\w^2}\W_\w+\psi_\w(\W_{\w^2}2))\] \[(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(4,1)= \psi(\W_{\w^2}\W_\w+\psi_\w(\W_{\w^2}\W))\] \[(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(4,1)= \psi(\W_{\w^2}\W_\w+\psi_\w(\W_{\w^2}\W))\] \[(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(4,1)(3,2,1)= \psi(\W_{\w^2}\W_\w+\psi_\w(\W_{\w^2}\W_\w))\] \[(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(4,1)(3,2,1)(4,2,1)= \psi(\W_{\w^2}\m(\W_\w+1))\] \[(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(4,1)(3,2,1)(4,2,1)(4,1)= \psi(\W_{\w^2}\m(\W_\w+\W))\] \[(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(4,1)(4)= \psi(\W_{\w^2}\W_\w\w)\] \[(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(4,1)(5,2,1)= \psi(\W_{\w^2}\psi_{\w}(\W_{\w+1}))\] \[(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(4,2)= \psi(\W_{\w^2}\W_{\w+1})\] \[(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(4,2)(3,2,1)= \psi(\W_{\w^2}\W_{\w2})\] \[(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1)(3,2,1)(4,2,1)(4,2)(3,2,1)(4,2)(5,3,1)(6,3,1)(6,3)= \psi(\W_{\w^2}\W_{\w2+1})\] \[(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1,1)= \psi(\W_{\w^2}^2)\] \[(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1,1)(1,1,1)(2,1,1)= \psi(\W_{\w^2}^2+\W_{\w^2})\] \[(0)(1,1,1)(2,1,1)(2,1)(1,1,1)(2,1,1)(1,1,1)(2,1,1)(2,1)= \psi(\W_{\w^2}^2+\W_{\w^2}\W)\] \[(0)(1,1,1)(2,1,1)(2,1)(2,1)= \psi(\W_{\w^2}^2\W)\] \[(0)(1,1,1)(2,1,1)(2,1)(2,1)(1,1,1)(2,1,1)= \psi(\W_{\w^2}^3)\] \[(0)(1,1,1)(2,1,1)(2,1)(3)= \psi(\W_{\w^2}^\w)\] \[(0)(1,1,1)(2,1,1)(2,1)(3,1)= \psi(\W_{\w^2}^\W)\] \[(0)(1,1,1)(2,1,1)(2,1)(3,2)= \psi(\W_{\w^2+1})\] \[(0)(1,1,1)(2,1,1)(2,1)(3,2,1)(4,2,1)= \psi(\W_{\w^2 2})\] \[(0)(1,1,1)(2,1,1)(2,1)(3,2,1)(4,2,1)(4,2)(5,3)= \psi(\W_{\w^2 2+1})\] \[(0)(1,1,1)(2,1,1)(2,1)(3,2,1)(4,2,1)(4,2)(5,3,1)(6,3,1)= \psi(\W_{\w^2 3})\] \[(0)(1,1,1)(2,1,1)(2,1,1)= \psi(\W_{\w^3})\] \[(0)(1,1,1)(2,1,1)(2,1,1)(2,1)(1,1,1)(2,1,1)(2,1,1)= \psi(\W_{\w^3}^2)\] \[(0)(1,1,1)(2,1,1)(2,1,1)(2,1)(3,2)= \psi(\W_{\w^3+1})\] \[(0)(1,1,1)(2,1,1)(2,1,1)(2,1)(3,2,1)= \psi(\W_{\w^3+\w})\] \[(0)(1,1,1)(2,1,1)(2,1,1)(2,1)(3,2,1)(4,2,1)= \psi(\W_{\w^3+\w^2})\] \[(0)(1,1,1)(2,1,1)(2,1,1)(2,1)(3,2,1)(4,2,1)(4,2,1)= \psi(\W_{\w^3 2})\] \[(0)(1,1,1)(2,1,1)(2,1,1)(2,1,1)= \psi(\W_{\w^4})\] \[(0)(1,1,1)(2,1,1)(3)= \psi(\W_{\w^\w})\] \[(0)(1,1,1)(2,1,1)(3)(2,1,1)= \psi(\W_{\w^{\w+1}})\] \[(0)(1,1,1)(2,1,1)(3)(2,1,1)(3)= \psi(\W_{\w^{\w2}})\] \[(0)(1,1,1)(2,1,1)(3)(3)= \psi(\W_{\w^{\w^2}})\] \[(0)(1,1,1)(2,1,1)(3)(4)= \psi(\W_{\w^{\w^\w}})\] \[(0)(1,1,1)(2,1,1)(3)(4,1,1)= \psi(\W_{\psi(\W_\w)})\] \[(0)(1,1,1)(2,1,1)(3)(4,1,1)(5,1,1)= \psi(\W_{\psi(\W_{\w^2})})\] \[(0)(1,1,1)(2,1,1)(3,1)= \psi(\W_{\W}) = \text{BIO}\] \[(0)(1,1,1)(2,1,1)(3,1)(1,1)(2,2,1)(3,2,1)(4,1)(3,2)(4,3,1)= \psi(\W_{\W+\w})\] \[(0)(1,1,1)(2,1,1)(3,1)(1,1)(2,2,1)(3,2,1)(4,1)(3,2)(4,3,1)(5,3,1)(6,1)= \psi(\W_{\W2})\] \[(0)(1,1,1)(2,1,1)(3,1)(1,1)(2,2,1)(3,2,1)(4,1)(3,2,1)= \psi(\W_{\W\w})\] \[(0)(1,1,1)(2,1,1)(3,1)(1,1)(2,2,1)(3,2,1)(4,1)(3,2,1)(4,1)= \psi(\W_{\W^2})\] \[(0)(1,1,1)(2,1,1)(3,1)(1,1)(2,2,1)(3,2,1)(4,2)= \psi(\W_{\W_2})\] \[(0)(1,1,1)(2,1,1)(3,1)(1,1,1)= \psi(\W_{\W_\w})\] \[(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1,1)= \psi(\W_{\W_{\w^2}})\] \[(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1,1)(3,1)= \psi(\W_{\W_{\W}})\] \[(0)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1,1)(3,1)(1,1,1)(2,1,1)(3,1)= \psi(\W_{\W_{\W_{\W}}})\]

BMS VS I Function

\[(0)(1,1,1)(2,1,1)(3,1)(2)= \psi(I) = \text{EBO}\] \[(0)(1,1,1)(2,1,1)(3,1)(2)(1,1,1)(2,1,1)(3,1)(2)= \psi(I+\psi_I(I))\] \[(0)(1,1,1)(2,1,1)(3,1)(2)(2)= \psi(I+\psi_I(I)\w)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)= \psi(I+\psi_I(I)\W)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(1,1,1)(2,1,1)(3,1)(2)= \psi(I+\psi_I(I)^2)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(1,1,1)(2,1,1)(3,1)(2,1)= \psi(I+\psi_I(I)^2+\psi_I(I)\W)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(2,1)= \psi(I+\psi_I(I)^2\W)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3)= \psi(I+\psi_I(I)^\w)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,1)= \psi(I+\psi_I(I)^\W)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2)= \psi(I+\psi_I(I+1))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)= \psi(I+\psi_I(I+\w))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)= \psi(I+\psi_I(I+\W))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(1,1,1)(2,1,1)(3,1)(2)= \psi(I+\psi_I(I+\psi_I(I)))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(1,1,1)(2,1,1)(3,1)(2)(1,1,1)(2,1,1)(3,1)(2)= \psi(I+\psi_I(I+\psi_I(I))+\psi_I(I))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(1,1,1)(2,1,1)(3,1)(2,1)= \psi(I+\psi_I(I+\psi_I(I))+\psi_I(I)\W)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(1,1,1)(2,1,1)(3,1)(2,1)(3,2)= \psi(I+\psi_I(I+\psi_I(I))+\psi_{\psi_I(I+1)}(\psi_I(I+1)))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)= \psi(I+\psi_I(I+\psi_I(I))+\psi_{\psi_I(I+1)}(\psi_I(I+\W)))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(2)= \psi(I+\psi_I(I+\psi_I(I))+\psi_{\psi_I(I+1)}(\psi_I(I+\psi_I(I))+1))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(2)(2)= \psi(I+\psi_I(I+\psi_I(I))+\psi_{\psi_I(I+1)}(\psi_I(I+\psi_I(I))+2))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(2,1)= \psi(I+\psi_I(I+\psi_I(I))+\psi_{\psi_I(I+1)}(\psi_I(I+\psi_I(I))+\W))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(2,1)(3,2,1)= \psi(I+\psi_I(I+\psi_I(I))+\psi_{\psi_I(I+1)}(\psi_I(I+\psi_I(I))+\psi_{\psi_I(I+1)}(\psi_I(I+\w))))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(2,1)(3,2,1)(4,2,1)(5,1)= \psi(I+\psi_I(I+\psi_I(I))+\psi_{\psi_I(I+1)}(\psi_I(I+\psi_I(I))+\psi_{\psi_I(I+1)}(\psi_I(I+\W))))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(3)= \psi(I+\psi_I(I+\psi_I(I))+\psi_{\psi_I(I+1)}(\psi_I(I+\psi_I(I))+\psi_{\psi_I(I+1)}(\psi_I(I+\psi_I(I))+1)))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(3,1)= \psi(I+\psi_I(I+\psi_I(I))+\psi_{\psi_I(I+1)}(\psi_I(I+\psi_I(I))+\psi_{\psi_I(I+1)}(\psi_I(I+\psi_I(I))+\W)))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(3,1)(4,2,1)(5,2,1)(6,1)= \psi(I+\psi_I(I+\psi_I(I))+\psi_{\psi_I(I+1)}(\psi_I(I+\psi_I(I))+\psi_{\psi_I(I+1)}(\psi_I(I+\psi_I(I))+\psi_{\psi_I(I+1)}(\psi_I(I+\W)))))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(3,2)= \psi(I+\psi_I(I+\psi_I(I))+\psi_I(I+1))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(3,2)(3,2)= \psi(I+\psi_I(I+\psi_I(I))+\psi_I(I+1)2)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(3,2)(4,3,1)= \psi(I+\psi_I(I+\psi_I(I))+\psi_{\psi_I(I+2)}(\psi_I(I+\w)))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(3,2)(4,3,1)(5,3,1)(6,1)= \psi(I+\psi_I(I+\psi_I(I))+\psi_{\psi_I(I+2)}(\psi_I(I+\W)))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(3,2)(4,3,1)(5,3,1)(6,1)(4,3)= \psi(I+\psi_I(I+\psi_I(I))+\psi_I(I+2))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(3,2)(4,3,1)(5,3,1)(6,1)(4,3)(5,4,1)(6,4,1)(7,1)(5,4)= \psi(I+\psi_I(I+\psi_I(I))+\psi_I(I+3))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(3,2,1)= \psi(I+\psi_I(I+\psi_I(I))+\psi_I(I+\w))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(3,2,1)(4,2,1)(5,1)= \psi(I+\psi_I(I+\psi_I(I))+\psi_I(I+\W))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(3,2,1)(4,2,1)(5,1)(3,2,1)(4,2,1)(5,1)= \psi(I+\psi_I(I+\psi_I(I))2+\psi_I(I+\W))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(4)= \psi(I+\psi_I(I+\psi_I(I))\w)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,1)= \psi(I+\psi_I(I+\psi_I(I))\W)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,1)(3,2)= \psi(I+\psi_I(I+\psi_I(I))\psi_I(I)+\psi_I(I+1))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,1)(3,2,1)(4,2,1)(5,1)(4,1)= \psi(I+\psi_I(I+\psi_I(I))\psi_I(I)2)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,1)(4,1)= \psi(I+\psi_I(I+\psi_I(I))\psi_I(I)\W)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,1)(5,2)= \psi(I+\psi_I(I+\psi_I(I))\psi_{\psi_I(I+1)}(\psi_I(I+1)))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,1)(5,2,1)= \psi(I+\psi_I(I+\psi_I(I))\psi_{\psi_I(I+1)}(\psi_I(I+\w)))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,1)(5,2,1)(6,2,1)(7,1)(6,1)= \psi(I+\psi_I(I+\psi_I(I))\psi_{\psi_I(I+1)}(I+\psi_I(I+\psi_I(I))\W))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,1)(5,2,1)(6,2,1)(7,1)(6,1)(7,2,1)(8,2,1)(9,1)(8,1)= \psi(I+\psi_I(I+\psi_I(I))\psi_{\psi_I(I+1)}(I+\psi_I(I+\psi_I(I))\psi_{\psi_I(I+1)}(I+\psi_I(I+\psi_I(I))\W)))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,2)= \psi(I+\psi_I(I+\psi_I(I))\psi_I(I+1))\] 提升 \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,2)(3,2,1)= \psi(I+\psi_I(I+\psi_I(I))\psi_I(I+\w))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,2)(3,2,1)(4,2,1)(5,1)= \psi(I+\psi_I(I+\psi_I(I))\psi_I(I+\W))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,2)(3,2,1)(4,2,1)(5,1)(1,1,1)(2,1,1)(3,1)(2)= \psi(I+\psi_I(I+\psi_I(I))^2)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,2)(3,2,1)(4,2,1)(5,1)(4,2)= \psi(I+\psi_I(I+\psi_I(I))^2\psi_I(I+1))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,2)(4)= \psi(I+\psi_I(I+\psi_I(I))^\w)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,2)(4,1)= \psi(I+\psi_I(I+\psi_I(I))^\W)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,2)(4,1)(5,2,1)= \psi(I+\psi_I(I+\psi_I(I))^{\psi_{\psi_I(I+1)}(\psi_I(I+1))})\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,2)(4,2)= \psi(I+\psi_I(I+\psi_I(I))^{\psi_I(I+1)})\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,2)(4,2)(3,2,1)= \psi(I+\psi_I(I+\psi_I(I))^{\psi_I(I+\w)})\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,2)(4,2)(4)= \psi(I+\psi_I(I+\psi_I(I))^{\psi_I(I+\psi_I(I))\w})\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,2)(5,3)= \psi(I+\psi_I(I+\psi_I(I)+1))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,2)(5,3,1)= \psi(I+\psi_I(I+\psi_I(I)+\w))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,2)(5,3,1)(6,4,1)(7,1)= \psi(I+\psi_I(I+\psi_I(I)+\W))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,2)(5,3,1)(6,4,1)(7,1)(1,1,1)(2,1,1)(3,1)(2)= \psi(I+\psi_I(I+\psi_I(I)2))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,2)(5,3,1)(6,4,1)(7,1)(6,3)(7,4,1)(8,4,1)(9,1)= \psi(I+\psi_I(I+\psi_I(I)2+\W))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,2,1)= \psi(I+\psi_I(I+\psi_I(I)\w))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,2,1)(5,1)= \psi(I+\psi_I(I+\psi_I(I)\W))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,1)(6,2,1)= \psi(I+\psi_I(I+\psi_{\psi_I(I+1)}(\psi_I(I+\w))))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,2)= \psi(I+\psi_I(I+\psi_I(I+1)))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,2)(3,2,1)(4,2,1)(5,2)= \psi(I+\psi_I(I+\psi_I(I+\psi_I(I+1))))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,2)(4)= \psi(I2)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,2)(4)(3,2,1)= \psi(I2+\psi_I(I+\w))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,2)(4)(4)= \psi(I2+\psi_I(I2)\w)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,2)(4,1)= \psi(I2+\psi_I(I2)\W)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,2)(4,2)= \psi(I2+\psi_I(I2)\psi_I(I+1))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,2)(4,2)(3,2,1)(4,2,1)(5,2)(4)= \psi(I2+\psi_I(I2)^2)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,2)(4,2)(4)= \psi(I2+\psi_I(I2)^\w)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,2)(4,2)(5,3,1)= \psi(I2+\psi_I(I2+\w))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,2)(4,2)(5,3,1)(6,3,1)(7,2)= \psi(I2+\psi_I(I2+\psi_I(I+1)))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,2)(4,2)(5,3,1)(6,3,1)(7,2)(6)= \psi(I2+\psi_I(I2+\psi_I(I2)))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,2)(4,2)(5,3,1)(6,3,1)(7,3)= \psi(I2+\psi_I(I2+\psi_I(I2+1)))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,2)(4,2)(5,3,1)(6,3,1)(7,3)(6)= \psi(I3)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1,1)= \psi(I\w)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1,1)(1,1,1)(2,1,1)(3,1)(2)= \psi(I\w+\psi_I(I))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1,1)(1,1,1)(2,1,1)(3,1)(2,1,1)= \psi(I\w+\psi_I(I\w))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1,1)(2)= \psi(I\w+\psi_I(I\w)\w)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1,1)(2,1)(3,2,1)= \psi(I\w+\psi_I(I\w+\w))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1,1)(2,1)(3,2,1)(4,2,1)(5,1)= \psi(I\w+\psi_I(I\w+\W))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1,1)(2,1)(3,2,1)(4,2,1)(5,1)(1,1,1)(2,1,1)(3,1)(2)= \psi(I\w+\psi_I(I\w+\psi_I(I)))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1,1)(2,1)(3,2,1)(4,2,1)(5,1)(1,1,1)(2,1,1)(3,1)(2,1,1)= \psi(I\w+\psi_I(I\w+\psi_I(I\w)))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1,1)(2,1)(3,2,1)(4,2,1)(5,2)= \psi(I\w+\psi_I(I\w+\psi_I(I\w+1)))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1,1)(2,1)(3,2,1)(4,2,1)(5,2)(4)= \psi(I\w+I)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1,1)(2,1)(3,2,1)(4,2,1)(5,2)(4,2,1)= \psi(I\w2)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1,1)(2,1)(3,2,1)(4,2,1)(5,2)(4,2,1)(4,2)(5,3,1)(6,3,1)(7,3)(6)= \psi(I\w2+I)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1,1)(2,1)(3,2,1)(4,2,1)(5,2)(4,2,1)(4,2)(5,3,1)(6,3,1)(7,3)(6,3,1)= \psi(I\w3)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1,1)(2,1,1)= \psi(I\w^2)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1,1)(2,1,1)(2,1,1)= \psi(I\w^3)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1,1)(3)= \psi(I\w^\w)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1,1)(3,1)= \psi(I\W)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1,1)(3,1)(1,1,1)(2,1,1)(3,1)(2)= \psi(I\psi_I(I))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1,1)(3,1)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,2)(4,2,1)(5,1)(4,2)(5,3,1)(6,3,1)(7,3)(6)= \psi(I\psi_I(I)+I)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1,1)(3,1)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,2)(4,2,1)(5,1)(4,2)(5,3,1)(6,3,1)(7,3)(6,3,1)= \psi(I\psi_I(I)+I\w)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1,1)(3,1)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,2)(4,2,1)(5,1)(4,2,1)= \psi(I\psi_I(I)\w)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1,1)(3,1)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,2)(4,2,1)(5,1)(6,2)= \psi(I\psi_I(I+1))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1,1)(3,1)(1,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,2)(4,2,1)(5,2)(3,2,1)(4,2,1)(5,2)(4)= \psi(I\psi_I(I2))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1,1)(3,1)(1,1,1)(2,1,1)(3,1)(2,1,1)= \psi(I\psi_I(I\w))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1,1)(3,1)(1,1,1)(2,1,1)(3,1)(2,1,1)(3,1)= \psi(I\psi_I(I\W))\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1,1)(3,1)(2)= \psi(I^2)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1,1)(3,1)(2,1)= \psi(I^2+\psi_I(I^2)\W)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,2)(4)= \psi(I^2+I)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,2)(4,2,1)(4,2)(4)= \psi(I^2 2)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1,1)(3,1)(2,1,1)= \psi(I^2\w)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1,1)(3,1)(2,1,1)(2,1,1)= \psi(I^2\w^2)\] \[(0)(1,1,1)(2,1,1)(3,1)(2,1,1)(3,1)(2,1,1)(3,1)= \psi(I^2\W)\] \[(0)(1,1,1)(2,1,1)(3,1)(3)= \psi(I^\w)\] \[(0)(1,1,1)(2,1,1)(3,1)(3,1)= \psi(I^\W)\] \[(0)(1,1,1)(2,1,1)(3,1)(3,1)(2)= \psi(I^I)\] \[(0)(1,1,1)(2,1,1)(3,1)(3,1)(2,1,1)= \psi(I^I\w)\] \[(0)(1,1,1)(2,1,1)(3,1)(3,1)(2,1,1)(3,1)= \psi(I^I\W)\] \[(0)(1,1,1)(2,1,1)(3,1)(3,1)(2,1,1)(3,1)(2)= \psi(I^{I+1})\] \[(0)(1,1,1)(2,1,1)(3,1)(3,1)(2,1,1)(3,1)(2,1,1)(3,1)(2)= \psi(I^{I+2})\] \[(0)(1,1,1)(2,1,1)(3,1)(3,1)(2,1,1)(3,1)(3)= \psi(I^{I+\w})\] \[(0)(1,1,1)(2,1,1)(3,1)(3,1)(2,1,1)(3,1)(3,1)= \psi(I^{I+\W})\] \[(0)(1,1,1)(2,1,1)(3,1)(3,1)(3)= \psi(I^{I\w})\] \[(0)(1,1,1)(2,1,1)(3,1)(3,1)(3,1)= \psi(I^{I\W})\] \[(0)(1,1,1)(2,1,1)(3,1)(4)= \psi(I^{I^{\w}})\] \[(0)(1,1,1)(2,1,1)(3,1)(4,1)= \psi(I^{I^{\W}})\] \[(0)(1,1,1)(2,1,1)(3,1)(4,1)(5,1)= \psi(I^{I^{I^{\W}}})\] \[(0)(1,1,1)(2,1,1)(3,1)(4,2)= \psi(\W_{I+1}) = \text{Jager’s Ordinal}\] \[(0)(1,1,1)(2,1,1)(3,1)(4,2)(2,1,1)= \psi(\W_{I+1}+\psi_{\W_{I+1}}(\W_{I+1}+1))\] \[(0)(1,1,1)(2,1,1)(3,1)(4,2)(2,1,1)(3,1)(4,2)= \psi(\W_{I+1}+\psi_{\W_{I+1}}(\W_{I+1}+\psi_{\W_{I+1}}(\W_{I+1}+1)))\] \[(0)(1,1,1)(2,1,1)(3,1)(4,2)(4,2)= \psi(\W_{I+1}2)\] \[(0)(1,1,1)(2,1,1)(3,1)(4,2)(5,3)= \psi(\W_{I+2})\] \[(0)(1,1,1)(2,1,1)(3,1)(4,2,1)= \psi(\W_{I+\w})\] \[(0)(1,1,1)(2,1,1)(3,1)(4,2,1)(5,2,1)(6,1)= \psi(\W_{I+\W})\] \[(0)(1,1,1)(2,1,1)(3,1)(4,2,1)(5,2,1)(6,1)(2)= \psi(\W_{I2})\] \[(0)(1,1,1)(2,1,1)(3,1)(4,2,1)(5,2,1)(6,1)(4,2)= \psi(\W_{I2}+\W_{I+1})\] \[(0)(1,1,1)(2,1,1)(3,1)(4,2,1)(5,2,1)(6,1)(4,2,1)(5,2,1)(6,1)= \psi(\W_{I2}+\W_{I+\W})\] \[(0)(1,1,1)(2,1,1)(3,1)(4,2,1)(5,2,1)(6,1)(5)= \psi(\W_{I2}\w)\] \[(0)(1,1,1)(2,1,1)(3,1)(4,2,1)(5,2,1)(6,1)(5,2)(6,3)= \psi(\W_{I2+1})\] \[(0)(1,1,1)(2,1,1)(3,1)(4,2,1)(5,2,1)(6,1)(5,2,1)= \psi(\W_{I\w})\] \[(0)(1,1,1)(2,1,1)(3,1)(4,2,1)(5,2,1)(6,1)(5,2,1)(6,1)= \psi(\W_{I\W})\] \[(0)(1,1,1)(2,1,1)(3,1)(4,2,1)(5,2,1)(6,1)(7,2)= \psi(\W_{\psi_{\W_{I+1}}(\W_{I+1})})\] \[(0)(1,1,1)(2,1,1)(3,1)(4,2,1)(5,2,1)(6,2)= \psi(\W_{\W_{I+1}})\] \[(0)(1,1,1)(2,1,1)(3,1)(4,2,1)(5,2,1)(6,2)(5)= \psi(I_2)\] \[(0)(1,1,1)(2,1,1)(3,1)(4,2,1)(5,2,1)(6,2)(5)(2,1,1)= \psi(I_2+\psi_{\W_{I+1}}(I_2+1))\] \[(0)(1,1,1)(2,1,1)(3,1)(4,2,1)(5,2,1)(6,2)(5)(4,2)= \psi(I_2+\W_{I+1})\] \[(0)(1,1,1)(2,1,1)(3,1)(4,2,1)(5,2,1)(6,2)(5)(4,2,1)= \psi(I_2+\W_{I+\w})\] \[(0)(1,1,1)(2,1,1)(3,1)(4,2,1)(5,2,1)(6,2)(5)(4,2,1)(5,2,1)(6,2)(5)= \psi(I_2+\psi_{I_2}(I_2))\] \[(0)(1,1,1)(2,1,1)(3,1)(4,2,1)(5,2,1)(6,2)(5,1)= \psi(I_2+\psi_{I_2}(I_2)\W)\] \[(0)(1,1,1)(2,1,1)(3,1)(4,2,1)(5,2,1)(6,2)(5,2)(6,2,1)(7,2,1)(8,2)= \psi(I_2+\psi_{I_2}(I_2+\psi_{I_2}(I_2+1)))\] \[(0)(1,1,1)(2,1,1)(3,1)(4,2,1)(5,2,1)(6,2)(5,2)(6,3,1)(7,3,1)(8,3)(7)= \psi(I_2\m2)\] \[(0)(1,1,1)(2,1,1)(3,1)(4,2,1)(5,2,1)(6,2)(5,2,1)= \psi(I_2\m\w)\] \[(0)(1,1,1)(2,1,1)(3,1)(4,2,1)(5,2,1)(6,2)(7,3)= \psi(\W_{I_2+1})\] \[(0)(1,1,1)(2,1,1)(3,1)(4,2,1)(5,2,1)(6,2)(7,3,1)(8,4,1)(9,3)(8)= \psi(I_3)\] \[(0)(1,1,1)(2,1,1)(3,1,1)= \psi(I_\w)\] \[(0)(1,1,1)(2,1,1)(3,1,1)(1,1,1)(2,1,1)(3,1,1)= \psi(I_\w 2)\] \[(0)(1,1,1)(2,1,1)(3,1,1)(2,1)(3,2,1) = \psi(\W_{I_\w+1})\] \[(0)(1,1,1)(2,1,1)(3,1,1)(2,1)(3,2,1)(4,2,1)(5,1)(4,2,1) = \psi(\W_{I_\w\w})\] \[(0)(1,1,1)(2,1,1)(3,1,1)(2,1)(3,2,1)(4,2,1)(5,2)(4) = \psi(I_{\w+1})\] \[(0)(1,1,1)(2,1,1)(3,1,1)(2,1)(3,2,1)(4,2,1)(5,2)(6,3,1)(7,3,1)(8,3)(7) = \psi(I_{\w+2})\] \[(0)(1,1,1)(2,1,1)(3,1,1)(2,1)(3,2,1)(4,2,1)(5,2,1) = \psi(I_{\w2})\] \[(0)(1,1,1)(2,1,1)(3,1,1)(2,1,1) = \psi(I_{\w^2})\] \[(0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1) = \psi(I_{\W})\] \[(0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1)(2) = \psi(I(1,0))\] \[(0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1)(2,1) = \psi(I(1,0)+\psi_{I(1,0)}(I(1,0))\W)\] \[(0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1)(2,1)(3,2,1)(4,2,1)(5,2,1)(4,2,1)(5,2)(4) = \psi(I(1,0)2)\] \[(0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1)(4,2,1)(5,2,1)(6,2)(5) = \psi(I_{I(1,0)+1})\] \[(0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1)(4,2,1)(5,2,1)(6,2,1) = \psi(I_{I(1,0)+\w})\] \[(0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1)(4,2,1)(5,2,1)(6,2,1)(5) = \psi(I(1,1))\] \[(0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,1) = \psi(I(1,\w))\] \[(0)(1,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1,1)(2,1,1)(3,1)(2) = \psi(I(2,0))\] \[(0)(1,1,1)(2,1,1)(3,1,1)(3) = \psi(I(\w,0))\] \[(0)(1,1,1)(2,1,1)(3,1,1)(3,1) = \psi(I(\W,0))\] \[(0)(1,1,1)(2,1,1)(3,1,1)(3,1)(2) = \psi(I(1,0,0))\] \[(0)(1,1,1)(2,1,1)(3,1,1)(3,1)(2,1,1) = \psi(I(1,0,0)\w)\] \[(0)(1,1,1)(2,1,1)(3,1,1)(3,1)(3) = \psi(I(\w,0,0))\] \[(0)(1,1,1)(2,1,1)(3,1,1)(3,1)(3,1)(2) = \psi(I(1,0,0,0))\] \[(0)(1,1,1)(2,1,1)(3,1,1)(3,1)(4) = \psi(I(1@\w))\] \[(0)(1,1,1)(2,1,1)(3,1,1)(3,1)(4,2) = \psi(I(1@(1@(1@(…)))))=\psi(2~ft2-2)\] \[(0)(1,1,1)(2,1,1)(3,1,1)(3,1)(4,2,1) = \psi(1-2aft2-2)\] \[(0)(1,1,1)(2,1,1)(3,1,1)(3,1)(4,2,1)(5,2,1)(6,1) = \psi((1-)^{\W}~2aft2-2)\] \[(0)(1,1,1)(2,1,1)(3,1,1)(3,1)(4,2,1)(5,2,1)(6,1)(2) = \psi(2~1-2aft2-2)\] \[(0)(1,1,1)(2,1,1)(3,1,1)(3,1)(4,2,1)(5,2,1)(6,2)(5) = \psi(2nd~2-2)\] \[(0)(1,1,1)(2,1,1)(3,1,1)(3,1,1) = \psi(1-2-2)\] \[(0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)(2,1,1) = \psi(1-1-2-2)\] \[(0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)(2,1,1)(3,1) = \psi((1-)^{\W}2-2)\] \[(0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)(2,1,1)(3,1)(2) = \psi(2~1-2-2)\] \[(0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)(2,1,1)(3,1,1) = \psi(1-2~1-2-2)\] \[(0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)(2,1,1)(3,1,1)(3,1,1) = \psi(1-2-2~1-2-2)\] \[(0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)(3) = \psi((2~1-2-)^{\w}2)\] \[(0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)(3,1) = \psi((2~1-2-)^{\W}2)\] \[(0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)(3,1)(4,2) = \psi(2aft2-2-2)\] \[(0)(1,1,1)(2,1,1)(3,1,1)(3,1,1)(3,1,1) = \psi(1-2-2-2)\] \[(0)(1,1,1)(2,1,1)(3,1,1)(4) = \psi(2-^{\w})\] \[(0)(1,1,1)(2,1,1)(3,1,1)(4,1) = \psi(2-^{\W})\] \[(0)(1,1,1)(2,1,1)(3,1,1)(4,1)(2) = \psi(2-^{(1,0)})\] \[(0)(1,1,1)(2,1,1)(3,1,1)(4,1)(5,2) = \psi(2aft3)\] \[(0)(1,1,1)(2,1,1)(3,1,1)(4,1,1) = \psi(1-3)\] \[(0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(3,1,1) = \psi(1-2-3)\] \[(0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(3,1,1)(4) = \psi((2-)^\w3)\] \[(0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(3,1,1)(4,1)(2) = \psi(3~2-3)\] \[(0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(3,1,1)(4,1,1) = \psi(1-3~2-3)\] \[(0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(4) = \psi((3~2-)^\w 3)\] \[(0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(4,1)(5,2) = \psi(2aft3-3)\] \[(0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(4,1,1) = \psi(1-3-3)\] \[(0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(5) = \psi(3-^\w)\] \[(0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(5,1)(6,2) = \psi(2aft4)\] \[(0)(1,1,1)(2,1,1)(3,1,1)(4,1,1)(5,1,1) = \psi(1-4)\]

Σ1 Stability Era

\[(0)(1,1,1)(2,2) = \psi(\Pi_\w)=\psi(\lambda\alpha.\alpha+1-\Pi_0)\] \[(0)(1,1,1)(2,2)(1,1,1)(2,2) = \psi(\Pi_\w 2)\] \[(0)(1,1,1)(2,2)(2,1) = \psi(\Pi_\w \W)\] \[(0)(1,1,1)(2,2)(2,1) = \psi(\Pi_\w \W)\] \[(0)(1,1,1)(2,2)(2,1)(3,2,1) = \psi(1-2 aft \Pi_\w)\] \[(0)(1,1,1)(2,2)(2,1)(3,2,1)(4,2,1)(5,2,1) = \psi(1-3 aft \Pi_\w)\] \[(0)(1,1,1)(2,2)(2,1)(3,2,1)(4,3) = \psi(2nd\Pi_\w)\] \[(0)(1,1,1)(2,2)(2,1)(3,2,1)(4,3)(4,2)(5,3,1)(6,4) = \psi(3rd\Pi_\w)\] \[(0)(1,1,1)(2,2)(2,1,1) = \psi(1-\Pi_\w)\] \[(0)(1,1,1)(2,2)(2,1,1)(2,1,1) = \psi(1-1-\Pi_\w)\] \[(0)(1,1,1)(2,2)(2,1,1)(3,1) = \psi((1-)^\W\Pi_\w)\] \[(0)(1,1,1)(2,2)(2,1,1)(3,1)(2) = \psi(2~1-\Pi_\w)\] \[(0)(1,1,1)(2,2)(2,1,1)(3,1,1) = \psi(1-2~1-\Pi_\w)\] \[(0)(1,1,1)(2,2)(2,1,1)(3,1,1)(4,1,1) = \psi(1-3~1-\Pi_\w)\] \[(0)(1,1,1)(2,2)(2,1,1)(3,2) = \psi(\Pi_\w~1-\Pi_\w)\] \[(0)(1,1,1)(2,2)(2,1,1)(3,2)(2,1,1) = \psi(1-\Pi_\w~1-\Pi_\w)\] \[(0)(1,1,1)(2,2)(2,1,1)(3,2)(2,1,1)(3,2) = \psi(\Pi_\w~1-\Pi_\w~1-\Pi_\w)\] \[(0)(1,1,1)(2,2)(2,1,1)(3,2)(3) = \psi((\Pi_\w~1-)^\w~\Pi_\w)\] \[(0)(1,1,1)(2,2)(2,1,1)(3,2)(3,1) = \psi((\Pi_\w~1-)^\W~\Pi_\w)\] \[(0)(1,1,1)(2,2)(2,1,1)(3,2)(3,1)(2) = \psi(2-\Pi_\w)\] \[(0)(1,1,1)(2,2)(2,1,1)(3,2)(3,1,1) = \psi(1-2-\Pi_\w)\] \[(0)(1,1,1)(2,2)(2,1,1)(3,2)(3,1,1)(3,1,1) = \psi(1-2-2-\Pi_\w)\] \[(0)(1,1,1)(2,2)(2,1,1)(3,2)(3,1,1)(4,1) = \psi((2-)^\W\Pi_\w)\] \[(0)(1,1,1)(2,2)(2,1,1)(3,2)(3,1,1)(4,1)(2) = \psi(3~2-\Pi_\w)\] \[(0)(1,1,1)(2,2)(2,1,1)(3,2)(3,1,1)(4,1,1) = \psi(1-3~2-\Pi_\w)\] \[(0)(1,1,1)(2,2)(2,1,1)(3,2)(3,1,1)(4,2) = \psi(\Pi_\w~2-\Pi_\w)\] \[(0)(1,1,1)(2,2)(2,1,1)(3,2)(3,1,1)(4,2)(4,1,1)(5,2) = \psi(\Pi_\w~3-\Pi_\w)\] \[(0)(1,1,1)(2,2)(2,2) = \psi(\Pi_\w-\Pi_\w)\] \[(0)(1,1,1)(2,2)(2,2)(2,1,1) = \psi(1-\Pi_\w-\Pi_\w)\] \[(0)(1,1,1)(2,2)(2,2)(2,1,1)(3,2)(3,2) = \psi(\Pi_\w-\Pi_\w~1-\Pi_\w-\Pi_\w)\] \[(0)(1,1,1)(2,2)(2,2)(2,2) = \psi(\Pi_\w-\Pi_\w-\Pi_\w)\] \[(0)(1,1,1)(2,2)(3,1) = \psi((\Pi_\w)^\W)\] \[(0)(1,1,1)(2,2)(3,1)(2) = \psi(\Pi_{\w+1})\] \[(0)(1,1,1)(2,2)(3,1)(4,2) = \psi(2aft\Pi_{\w+1})\] \[(0)(1,1,1)(2,2)(3,1,1) = \psi(1-\Pi_{\w+1})\] \[(0)(1,1,1)(2,2)(3,1,1)(2,1,1) = \psi(1-1-\Pi_{\w+1})\] \[(0)(1,1,1)(2,2)(3,1,1)(2,1,1)(3,1)(2) = \psi(2~1-\Pi_{\w+1})\] \[(0)(1,1,1)(2,2)(3,1,1)(2,1,1)(3,1,1) = \psi(1-2~1-\Pi_{\w+1})\] \[(0)(1,1,1)(2,2)(3,1,1)(2,1,1)(3,2) = \psi(\Pi_{\w}~1-\Pi_{\w+1})\] \[(0)(1,1,1)(2,2)(3,1,1)(2,1,1)(3,2)(2,1,1) = \psi(1-\Pi_{\w}~1-\Pi_{\w+1})\] \[(0)(1,1,1)(2,2)(3,1,1)(2,1,1)(3,2)(3,2) = \psi(\Pi_{\w}-\Pi_{\w}~1-\Pi_{\w+1})\] \[(0)(1,1,1)(2,2)(3,1,1)(2,1,1)(3,2)(3,2) = \psi(\Pi_{\w}-\Pi_{\w}~1-\Pi_{\w+1})\] \[(0)(1,1,1)(2,2)(3,1,1)(2,1,1)(3,2)(4) = \psi((\Pi_{\w}-)^\w~1-\Pi_{\w+1})\] \[(0)(1,1,1)(2,2)(3,1,1)(2,1,1)(3,2)(4,1) = \psi((\Pi_{\w}-)^\W~1-\Pi_{\w+1})\] \[(0)(1,1,1)(2,2)(3,1,1)(2,1,1)(3,2)(4,1)(2) = \psi(\Pi_{\w+1}~1-\Pi_{\w+1})\] \[(0)(1,1,1)(2,2)(3,1,1)(2,1,1)(3,2)(4,1,1) = \psi(1-\Pi_{\w+1}~1-\Pi_{\w+1})\] \[(0)(1,1,1)(2,2)(3,1,1)(2,1,1)(3,2)(4,1,1)(2,1,1) = \psi(1-1-\Pi_{\w+1}~1-\Pi_{\w+1})\] \[(0)(1,1,1)(2,2)(3,1,1)(2,1,1)(3,2)(4,1,1)(3) = \psi((\Pi_{\w+1}~1-)^\w\Pi_{\w+1})\] \[(0)(1,1,1)(2,2)(3,1,1)(2,1,1)(3,2)(4,1,1)(3,1,1) = \psi(2-\Pi_{\w+1})\] \[(0)(1,1,1)(2,2)(3,1,1)(2,1,1)(3,2)(4,1,1)(3,1,1)(4,2) = \psi(\Pi_{\w}~2-\Pi_{\w+1})\] \[(0)(1,1,1)(2,2)(3,1,1)(2,1,1)(3,2)(4,1,1)(3,1,1)(4,2)(5,1,1)(4,1,1) = \psi(3-\Pi_{\w+1})\] \[(0)(1,1,1)(2,2)(3,1,1)(2,2) = \psi(\Pi_{\w}-\Pi_{\w+1})\] \[(0)(1,1,1)(2,2)(3,1,1)(2,2)(2,2) = \psi(\Pi_{\w}-\Pi_{\w}-\Pi_{\w+1})\] \[(0)(1,1,1)(2,2)(3,1,1)(2,2)(3) = \psi((\Pi_{\w}-)^\w\Pi_{\w+1})\] \[(0)(1,1,1)(2,2)(3,1,1)(2,2)(3,1)(2) = \psi(\Pi_{\w+1}~\Pi_{\w}-\Pi_{\w+1})\] \[(0)(1,1,1)(2,2)(3,1,1)(2,2)(3,1,1) = \psi(1-\Pi_{\w+1}~\Pi_{\w}-\Pi_{\w+1})\] \[(0)(1,1,1)(2,2)(3,1,1)(3) = \psi((\Pi_{\w+1}~\Pi_{\w}-)^\w\Pi_{\w+1})\] \[(0)(1,1,1)(2,2)(3,1,1)(3,1)(2) = \psi(\Pi_{\w+1}-\Pi_{\w+1})\] \[(0)(1,1,1)(2,2)(3,1,1)(3,1,1) = \psi(1-\Pi_{\w+1}-\Pi_{\w+1})\] \[(0)(1,1,1)(2,2)(3,1,1)(4) = \psi((\Pi_{\w+1})^\w)\] \[(0)(1,1,1)(2,2)(3,1,1)(4,1)(5,2) = \psi(2 aft \Pi_{\w+2})\] \[(0)(1,1,1)(2,2)(3,1,1)(4,1,1) = \psi(1-\Pi_{\w+2})\] \[(0)(1,1,1)(2,2)(3,1,1)(4,1,1)(2,2) = \psi(\Pi_{\w}-\Pi_{\w+2})\] \[(0)(1,1,1)(2,2)(3,1,1)(4,1,1)(3) = \psi((\Pi_{\w+2}~\Pi_{\w}-)^\w\Pi_{\w+2})\] \[(0)(1,1,1)(2,2)(3,1,1)(4,1,1)(3,1,1) = \psi(\Pi_{\w+1}-\Pi_{\w+2})\] \[(0)(1,1,1)(2,2)(3,1,1)(4,1,1)(3,1,1)(4,1,1) = \psi(1-\Pi_{\w+2}~\Pi_{\w+1}-\Pi_{\w+2})\] \[(0)(1,1,1)(2,2)(3,1,1)(4,1,1)(4) = \psi((\Pi_{\w+2}~\Pi_{\w+1}-)^\w\Pi_{\w+2})\] \[(0)(1,1,1)(2,2)(3,1,1)(4,1,1)(4,1,1) = \psi(1-\Pi_{\w+2}-\Pi_{\w+2})\] \[(0)(1,1,1)(2,2)(3,1,1)(4,1,1)(5) = \psi((\Pi_{\w+2}-)^\w)\] \[(0)(1,1,1)(2,2)(3,1,1)(4,1,1)(5,1,1) = \psi(1-\Pi_{\w+3})\] \[(0)(1,1,1)(2,2)(3,1,1)(4,2) = \psi(\Pi_{\w2}) = \psi(\lambda\alpha.\alpha+2-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,1,1)(4,2)(4,2) = \psi(\Pi_{\w2}-\Pi_{\w2})\] \[(0)(1,1,1)(2,2)(3,1,1)(4,2)(5,1,1) = \psi(1-\Pi_{\w2+1}) = \psi(1-\lambda\alpha.\alpha+2-\Pi_1)\] \[(0)(1,1,1)(2,2)(3,2) = \psi(\Pi_{\w^2}) = \psi(\lambda\alpha.\alpha+\w-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(2,2) = \psi(\Pi_{\w}-\Pi_{\w^2})\] \[(0)(1,1,1)(2,2)(3,2)(2,2)(3,2) = \psi(\Pi_{\w^2}-\Pi_{\w^2})\] \[(0)(1,1,1)(2,2)(3,2)(3,1)(2) = \psi(\Pi_{\w^2+1})= \psi(\lambda\alpha.\alpha+\w-\Pi_1)\] \[(0)(1,1,1)(2,2)(3,2)(3,1,1)(4,2) = \psi(\Pi_{\w^2+\w})= \psi(\lambda\alpha.\alpha+\w+1-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(3,1,1)(4,2)(5,2) = \psi(\Pi_{\w^2 2}) = \psi(\lambda\alpha.\alpha+\w2-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(3,2) = \psi(\Pi_{\w^3})= \psi(\lambda\alpha.\alpha+\w^2-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4) = \psi(\Pi_{\w^\w})= \psi(\lambda\alpha.\alpha+\w^\w-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1) = \psi(\Pi_{\W})= \psi(\lambda\alpha.\alpha+\W-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1)(2) = \psi(\lambda\alpha.\alpha2-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1)(2,1,1) = \psi(1-\lambda\alpha.\alpha2-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1)(2,2) = \psi(\Pi_\w-\lambda\alpha.\alpha2-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1)(2,2)(3,2)(4,1)(1,1,1)(2,2)(3,2)(4,1)(2) = \psi(\lambda\alpha.\alpha2-\Pi_0-\lambda\alpha.\alpha2-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1)(3) = \psi((\lambda\alpha.\alpha2-\Pi_0-)^\w)\] \[(0)(1,1,1)(2,2)(3,2)(4,1)(3,1)(2) = \psi(\lambda\alpha.\alpha2-\Pi_1)\] \[(0)(1,1,1)(2,2)(3,2)(4,1)(3,1,1) = \psi(1-\lambda\alpha.\alpha2-\Pi_1)\] \[(0)(1,1,1)(2,2)(3,2)(4,1)(3,1,1)(4,1,1) = \psi(\lambda\alpha.\alpha2-\Pi_2)\] \[(0)(1,1,1)(2,2)(3,2)(4,1)(3,1,1)(4,2) = \psi(\lambda\alpha.\alpha2+1-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1)(3,1,1)(4,2)(5,2) = \psi(\lambda\alpha.\alpha2+\w-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1)(3,1,1)(4,2)(5,2)(6,1) = \psi(\lambda\alpha.\alpha2+\W-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1)(3,1,1)(4,2)(5,2)(6,1)(2) = \psi(\lambda\alpha.\alpha3-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1)(3,1,1)(4,2)(5,2)(6,1)(5,1,1) = \psi(\lambda\alpha.\alpha3-\Pi_1)\] \[(0)(1,1,1)(2,2)(3,2)(4,1)(3,1,1)(4,2)(5,2)(6,1)(5,1,1)(6,2)(7,1)(2) = \psi(\lambda\alpha.\alpha4-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1)(3,2) = \psi(\lambda\alpha.\alpha\w-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1)(3,2)(3,1,1)(4,2) = \psi(\lambda\alpha.\alpha\w+1-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1)(3,2)(3,1,1)(4,2)(5,2)(6,1)(2) = \psi(\lambda\alpha.\alpha\m(\w+1)-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1)(3,2)(3,1,1)(4,2)(5,2)(6,1)(5,2) = \psi(\lambda\alpha.\alpha\m(\w2)-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1)(3,2)(3,2) = \psi(\lambda\alpha.\alpha\w^2-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1)(3,2)(4,1) = \psi(\lambda\alpha.\alpha\W-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1)(3,2)(4,1)(2) = \psi(\lambda\alpha.\alpha^2-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1)(3,2)(4,1)(3,2) = \psi(\lambda\alpha.\alpha^2\w-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1)(4) = \psi(\lambda\alpha.\alpha^\w-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1)(4,1) = \psi(\lambda\alpha.\alpha^\W-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1)(4,1)(2) = \psi(\lambda\alpha.\alpha^\alpha-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1)(5,2) = \psi(\lambda\alpha.\psi_{\W_{\alpha+1}}(\W_{\alpha+1})-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1)(5,2)(6,3) = \psi(\lambda\alpha.\psi_{\W_{\alpha+1}}(\W_{\alpha+2})-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1)(5,2,1) = \psi(\lambda\alpha.\psi_{\W_{\alpha+1}}(\W_{\alpha+\w})-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1)(5,2,1)(6,3) = \psi(\lambda\alpha.\psi_{\W_{\alpha+1}}(\lambda\alpha’.\alpha’+1-\Pi_0 aft \alpha)-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1)(5,2,1)(6,3)(7,3) = \psi(\lambda\alpha.\psi_{\W_{\alpha+1}}(\lambda\alpha’.\alpha’+\w-\Pi_0 aft \alpha)-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1)(5,2,1)(6,3)(7,3)(8,1) = \psi(\lambda\alpha.\psi_{\W_{\alpha+1}}(\lambda\alpha’.\alpha’+\W-\Pi_0 aft \alpha)-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1)(5,2,1)(6,3)(7,3)(8,1)(2) = \psi(\lambda\alpha.\psi_{\W_{\alpha+1}}(\lambda\alpha’.\alpha’+\alpha-\Pi_0 aft \alpha)-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1)(5,2,1)(6,3)(7,3)(8,2) = \psi(\lambda\alpha.\psi_{\W_{\alpha+1}}(\lambda\alpha’.\alpha’+\W_{\alpha+1}-\Pi_0 aft \alpha)-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1)(5,2,1)(6,3)(7,3)(8,2)(6) = \psi(\lambda\alpha.\psi_{\W_{\alpha+1}}(\lambda\alpha’.\alpha’2-\Pi_0 aft \alpha)-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1)(5,2,1)(6,3)(7,3)(8,2)(9,3,1) = \psi(\lambda\alpha.\psi_{\W_{\alpha+1}}(\lambda\alpha’.\psi_{\W_{\alpha’+1}}(\W_{\alpha’+\w})-\Pi_0 aft \alpha)-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1)(5,2,1)(6,3)(7,3)(8,2)(9,3,1)(10,4) = \psi(\lambda\alpha.\psi_{\W_{\alpha+1}}(\lambda\alpha’.\psi_{\W_{\alpha’+1}}(\lambda\alpha’’.\alpha’‘+1-\Pi_0aft\alpha’)-\Pi_0 aft \alpha)-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1,1) = \psi(\lambda\alpha.\W_{\alpha+1}-\Pi_1)\] \[(0)(1,1,1)(2,2)(3,2)(4,1,1)(2,2)(3,2)(4,1,1) = \psi(\lambda\alpha.\W_{\alpha+1}-\Pi_1~-~\lambda\alpha.\W_{\alpha+1}-\Pi_1)\] \[(0)(1,1,1)(2,2)(3,2)(4,1,1)(3) = \psi((\lambda\alpha.\W_{\alpha+1}-\Pi_1-)^\w)\] \[(0)(1,1,1)(2,2)(3,2)(4,1,1)(3,1)(2) = \psi(\lambda\alpha.\W_{\alpha+1}-\Pi_2)\] \[(0)(1,1,1)(2,2)(3,2)(4,1,1)(3,1,1) = \psi(1-\lambda\alpha.\W_{\alpha+1}-\Pi_2)\] \[(0)(1,1,1)(2,2)(3,2)(4,1,1)(3,1,1)(4,2) = \psi(\lambda\alpha.\W_{\alpha+1}+1-\Pi_0)\] 这里(3,1,1)(4,2)可以让\(\lambda\)内部+1. \[(0)(1,1,1)(2,2)(3,2)(4,1,1)(3,1,1)(4,2)(5,2) = \psi(\lambda\alpha.\W_{\alpha+1}+\w-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1,1)(3,1,1)(4,2)(5,2)(6,1) = \psi(\lambda\alpha.\W_{\alpha+1}+\W-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1,1)(3,1,1)(4,2)(5,2)(6,1)(2) = \psi(\lambda\alpha.\W_{\alpha+1}+\alpha-\Pi_0)\]= \[(0)(1,1,1)(2,2)(3,2)(4,1,1)(3,1,1)(4,2)(5,2)(6,1)(7,2) = \psi(\lambda\alpha.\W_{\alpha+1}+\psi_{\W_{\alpha+1}}(\W_{\alpha+1})-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1,1)(3,1,1)(4,2)(5,2)(6,1)(7,2,1) = \psi(\lambda\alpha.\W_{\alpha+1}+\psi_{\W_{\alpha+1}}(\W_{\alpha+\w})-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1,1)(3,1,1)(4,2)(5,2)(6,1)(7,2,1)(8,3) = \psi(\lambda\alpha.\W_{\alpha+1}+\psi_{\W_{\alpha+1}}(\lambda\alpha’.\alpha’+1-\Pi_0 aft \alpha)-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1,1)(3,1,1)(4,2)(5,2)(6,1)(7,2,1)(8,3)(9,3)(10,2) = \psi(\lambda\alpha.\W_{\alpha+1}+\psi_{\W_{\alpha+1}}(\lambda\alpha’.\alpha’2-\Pi_0 aft \alpha)-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1,1)(3,1,1)(4,2)(5,2)(6,1)(7,2,1)(8,3)(9,3)(10,2)(11,3,1) = \psi(\lambda\alpha.\W_{\alpha+1}+\psi_{\W_{\alpha+1}}(\lambda\alpha’.\psi_{\W_{\alpha’+1}}(\W_{\alpha’+\w})-\Pi_0 aft \alpha)-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1,1)(3,1,1)(4,2)(5,2)(6,1)(7,2,1)(8,3)(9,3)(10,2,1) = \psi(\lambda\alpha.\W_{\alpha+1}+\psi_{\W_{\alpha+1}}(\lambda\alpha’.\W_{\alpha’+1}-\Pi_1 aft \alpha)-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1,1)(3,1,1)(4,2)(5,2)(6,1)(7,2,1)(8,3)(9,3)(10,2,1)(9,2,1) = \psi(\lambda\alpha.\W_{\alpha+1}+\psi_{\W_{\alpha+1}}(\lambda\alpha’.1-\W_{\alpha’+1}-\Pi_2 aft \alpha)-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1,1)(3,1,1)(4,2)(5,2)(6,1)(7,2,1)(8,3)(9,3)(10,2,1)(9,2,1)(10,3) = \psi(\lambda\alpha.\W_{\alpha+1}+\psi_{\W_{\alpha+1}}(\lambda\alpha’.\W_{\alpha’+1}+1-\Pi_0 aft \alpha)-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1,1)(3,1,1)(4,2)(5,2)(6,1)(7,2,1)(8,3)(9,3)(10,2,1)(9,2,1)(10,3)(11,3)(12,2)(8) = \psi(\lambda\alpha.\W_{\alpha+1}+\psi_{\W_{\alpha+1}}(\lambda\alpha’.\W_{\alpha’+1}+\alpha’-\Pi_0 aft \alpha)-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1,1)(3,1,1)(4,2)(5,2)(6,1,1) = \psi(\lambda\alpha.\W_{\alpha+1}2-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1,1)(3,1,1)(4,2)(5,2)(6,1,1)(5,1,1)(6,2)(7,2)(8,1,1) = \psi(\lambda\alpha.\W_{\alpha+1}3-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1,1)(3,2) = \psi(\lambda\alpha.\W_{\alpha+1}\w-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1,1)(3,2)(4,1)(2) = \psi(\lambda\alpha.\W_{\alpha+1}\alpha-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1,1)(3,2)(4,1,1) = \psi(\lambda\alpha.\W_{\alpha+1}^2-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1,1)(3,2)(4,1,1)(3,2)(4,1,1) = \psi(\lambda\alpha.\W_{\alpha+1}^3-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1,1)(4) = \psi(\lambda\alpha.\W_{\alpha+1}^\w-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1,1)(4,1)(2) = \psi(\lambda\alpha.\W_{\alpha+1}^\alpha-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1,1)(4,1,1) = \psi(\lambda\alpha.\W_{\alpha+1}^{\W_{\alpha+1}}-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1,1)(5,2) = \psi(\lambda\alpha.\psi_{\W_{\alpha+2}}(\W_{\alpha+2})-\Pi_0)\] 这里附近疑似有psd.弱化 \[(0)(1,1,1)(2,2)(3,2)(4,1,1)(5,2)(5,2) = \psi(\lambda\alpha.\psi_{\W_{\alpha+2}}(\W_{\alpha+2}2)-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1,1)(5,2)(6,2) = \psi(\lambda\alpha.\psi_{\W_{\alpha+2}}(\W_{\alpha+2}^2)-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1,1)(5,2)(6,2)(7,1)(2) = \psi(\lambda\alpha.\psi_{\W_{\alpha+2}}(\W_{\alpha+2}^\alpha)-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1,1)(5,2)(6,2)(7,1,1) = \psi(\lambda\alpha.\psi_{\W_{\alpha+2}}(\W_{\alpha+2}^{\W_{\alpha+1}})-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,1,1)(5,2)(6,2)(7,1,1)(8,2) = \psi(\lambda\alpha.\psi_{\W_{\alpha+2}}(\W_{\alpha+2}^{\psi_{\W_{\alpha+2}}(\W_{\alpha+2})})-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,2)(4,2) = \psi(\lambda\alpha.\psi_{\W_{\alpha+2}}(\W_{\alpha+2}^{\W_{\alpha+2}})-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,3) = \psi(\lambda\alpha.\psi_{\W_{\alpha+2}}(\W_{\alpha+3})-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,3,1) = \psi(\lambda\alpha.\psi_{\W_{\alpha+2}}(\W_{\alpha+\w})-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,3,1)(4,4) = \psi(\lambda\alpha.\psi_{\W_{\alpha+2}}(\lambda\alpha’.\alpha’+1-\Pi_0 aft \alpha)-\Pi_0)\] \[(0)(1,1,1)(2,2)(3,3,1)(4,4)(5,5,1)(6,6)(7,7,1) = \psi(\lambda\alpha.\psi_{\W_{\alpha+2}}(\lambda\alpha’.\psi_{\W_{\alpha’+2}}(\lambda\alpha’’.\psi_{\W_{\alpha’‘+2}}(\W_{\alpha’’+\w})-\Pi_0 aft \alpha’)-\Pi_0 aft \alpha)-\Pi_0)\] <!– \[(0)(1,1,1)(2,2)(3,3,1)(4,4)(5,5,1)(6,6)(7,7,1) = \psi(\lambda\alpha.\psi_{\W_{\alpha+2}}(\lambda\alpha’.\psi_{\W_{\alpha’+2}}(\lambda\alpha’’.\psi_{\W_{\alpha’‘+2}}(\W_{\alpha’’+\w})-\Pi_0 aft \alpha’)-\Pi_0 aft \alpha)-\Pi_0)\]

\[(0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1) = \psi(\W\psi(\W\psi(\W\psi(\W))))\] \[(0)(1,1,1,1)(2,2,2)(3,3,3,1)(4,4,4)(5,5,5,1)(6,6,6)(7,7,7,1)\] –>

\[(0)(1,1,1)(2,2,1) = \psi(\lambda\alpha.\W_{\alpha+2}-\Pi_1)\]

3-Row Iteration

\[(0)(1,1,1)(2,2,1)(2,2) = \psi(\w-\lambda\alpha.\W_{\alpha+2}-\Pi_1)\] \[(0)(1,1,1)(2,2,1)(2,2)(3) = \psi((\w-)^\w\lambda\alpha.\W_{\alpha+2}-\Pi_1)\] \[(0)(1,1,1)(2,2,1)(2,2)(3,1) = \psi((\w-)^\W\lambda\alpha.\W_{\alpha+2}-\Pi_1)\] \[(0)(1,1,1)(2,2,1)(2,2)(3,1)(2) = \psi(\w+1~\w-\lambda\alpha.\W_{\alpha+2}-\Pi_1)\] \[(0)(1,1,1)(2,2,1)(2,2)(3,2) = \psi(\w^2-\lambda\alpha.\W_{\alpha+2}-\Pi_1)\] \[(0)(1,1,1)(2,2,1)(2,2)(3,2)(4,1)(2) = \psi(\lambda\alpha.\alpha2-\Pi_0-\lambda\alpha.\W_{\alpha+2}-\Pi_1)\] \[(0)(1,1,1)(2,2,1)(2,2)(3,2)(4,1,1) = \psi(\lambda\alpha.\W_{\alpha+1}-\Pi_1-\lambda\alpha.\W_{\alpha+2}-\Pi_1)\] \[(0)(1,1,1)(2,2,1)(2,2)(3,2)(4,1,1)(5,2,1) = \psi(\lambda\alpha.\W_{\alpha+2}-\Pi_1-\lambda\alpha.\W_{\alpha+2}-\Pi_1)\] \[(0)(1,1,1)(2,2,1)(2,2)(3,2)(4,1,1)(5,2,1)(3) = \psi((\lambda\alpha.\W_{\alpha+2}-\Pi_1-)^\w)\] \[(0)(1,1,1)(2,2,1)(2,2)(3,2)(4,1,1)(5,2,1)(3,1)(2) = \psi((\lambda\alpha.\W_{\alpha+2}-\Pi_2))\] \[(0)(1,1,1)(2,2,1)(2,2)(3,2)(4,1,1)(5,2,1)(3,1,1) = \psi(1-(\lambda\alpha.\W_{\alpha+2}-\Pi_2))\] \[(0)(1,1,1)(2,2,1)(2,2)(3,2)(4,1,1)(5,2,1)(3,1,1)(4,2) = \psi((\lambda\alpha.\W_{\alpha+2}+1-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(2,2)(3,2)(4,1,1)(5,2,1)(3,1,1)(4,2)(5,2)(6,1,1) = \psi((\lambda\alpha.\W_{\alpha+2}+\W_{\alpha+1}-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(2,2)(3,2)(4,1,1)(5,2,1)(3,1,1)(4,2)(5,2)(6,2) = \psi((\lambda\alpha.\W_{\alpha+2}+\psi_{\W_{\alpha+2}}(\W_{\alpha+2}^{\W_{\alpha+2}})-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(2,2)(3,2)(4,1,1)(5,2,1)(3,1,1)(4,2,1) = \psi((\lambda\alpha.\W_{\alpha+2}2-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(2,2)(3,2)(4,1,1)(5,2,1)(3,1,1)(4,2,1)(4,2)(5,2)(6,1,1)(7,2,1)(5,1,1) = \psi((\lambda\alpha.\W_{\alpha+2}3-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(2,2)(3,2)(4,1,1)(5,2,1)(3,1,1)(4,2,1)(4,2)(5,2)(6,1,1)(7,2,1)(5,1,1)(6,2,1) = \psi((\lambda\alpha.\W_{\alpha+2}3-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(2,2)(3,2)(4,1,1)(5,2,1)(3,2) = \psi((\lambda\alpha.\W_{\alpha+2}\w-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(2,2)(3,2)(4,1,1)(5,2,1)(3,2)(4,1) = \psi((\lambda\alpha.\W_{\alpha+2}\W-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(2,2)(3,2)(4,1,1)(5,2,1)(3,2)(4,1)(2) = \psi((\lambda\alpha.\W_{\alpha+2}\alpha-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(2,2)(3,2)(4,1,1)(5,2,1)(3,2)(4,1)(3,2) = \psi((\lambda\alpha.\W_{\alpha+2}\alpha\w-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(2,2)(3,2)(4,1,1)(5,2,1)(3,2)(4,1)(4,1) = \psi((\lambda\alpha.\W_{\alpha+2}\alpha^{\W}-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(2,2)(3,2)(4,1,1)(5,2,1)(3,2)(4,1)(5,2) = \psi((\lambda\alpha.\W_{\alpha+2}\psi_{\W_{\alpha+1}}(\W_{\alpha+2})-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(2,2)(3,2)(4,1,1)(5,2,1)(3,2)(4,1,1) = \psi((\lambda\alpha.\W_{\alpha+2}\W_{\alpha+1}-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(2,2)(3,2)(4,1,1)(5,2,1)(3,2)(4,1,1)(5,2,1) = \psi((\lambda\alpha.\W_{\alpha+2}^2-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(2,2)(3,2)(4,1,1)(5,2,1)(3,2)(4,1,1)(5,2,1)(3,2)(4,1,1)(5,2,1) = \psi((\lambda\alpha.\W_{\alpha+2}^3-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(2,2)(3,2)(4,1,1)(5,2,1)(4,1) = \psi((\lambda\alpha.\W_{\alpha+2}^\w-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(2,2)(3,2)(4,1,1)(5,2,1)(4,1,1) = \psi((\lambda\alpha.\W_{\alpha+2}^{\W_{\alpha+1}}-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(2,2)(3,2)(4,1,1)(5,2,1)(4,1,1)(5,2,1) = \psi((\lambda\alpha.\W_{\alpha+2}^{\W_{\alpha+2}}-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(2,2)(3,2)(4,1,1)(5,2,1)(5) = \psi((\lambda\alpha.\W_{\alpha+2}^{\W_{\alpha+2}\w}-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(2,2)(3,2)(4,1,1)(5,2,1)(5,1,1) = \psi((\lambda\alpha.\W_{\alpha+2}^{\W_{\alpha+2}\W_{\alpha+1}}-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(2,2)(3,2)(4,1,1)(5,2,1)(5,1,1)(6,2,1) = \psi((\lambda\alpha.\W_{\alpha+2}^{\W_{\alpha+2}^2}-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(2,2)(3,2)(4,1,1)(5,2,1)(5,1,1)(6,2,1)(6,1,1)(7,2,1) = \psi((\lambda\alpha.\W_{\alpha+2}^{\W_{\alpha+2}^{\W_{\alpha+2}}}-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(2,2)(3,2)(4,1,1)(5,2,1)(5,2) = \psi((\lambda\alpha.\psi_{\W_{\alpha+3}}(\W_{\alpha+3})-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(2,2)(3,2)(4,1,1)(5,2,1)(5,2)(6,2) = \psi((\lambda\alpha.\psi_{\W_{\alpha+3}}(\W_{\alpha+3}^2)-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(2,2)(3,2)(4,1,1)(5,2,1)(5,2)(6,2)(7,1,1) = \psi((\lambda\alpha.\psi_{\W_{\alpha+3}}(\W_{\alpha+3}^{\W_{\alpha+1}})-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(2,2)(3,3) = \psi((\lambda\alpha.\psi_{\W_{\alpha+3}}(\W_{\alpha+4})-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(2,2)(3,3,1) = \psi((\lambda\alpha.\psi_{\W_{\alpha+3}}(\W_{\alpha+\w})-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(2,2)(3,3,1)(4,4,1) = \psi((\lambda\alpha.\psi_{\W_{\alpha+3}}(\lambda\alpha’.\W_{\alpha’+2}-\Pi_1aft\alpha)-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(2,2,1) = \psi((\lambda\alpha.\W_{\alpha+3}-\Pi_1))\] \[(0)(1,1,1)(2,2,1)(2,2,1)(2,2,1) = \psi((\lambda\alpha.\W_{\alpha+4}-\Pi_1))\] \[(0)(1,1,1)(2,2,1)(3) = \psi((\lambda\alpha.\W_{\alpha+\w}-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(3)(2,2,1) = \psi((\lambda\alpha.\W_{\alpha+\w+1}-\Pi_1))\] \[(0)(1,1,1)(2,2,1)(3,1) = \psi((\lambda\alpha.\W_{\alpha+\W}-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(3,1)(2,2,1) = \psi((\lambda\alpha.\W_{\alpha2+1}-\Pi_1))\] \[(0)(1,1,1)(2,2,1)(3,1)(3) = \psi((\lambda\alpha.\W_{\alpha\w}-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(3,1)(3,1) = \psi((\lambda\alpha.\W_{\alpha\W}-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(3,1)(4) = \psi((\lambda\alpha.\W_{\alpha^{\w}}-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(3,1,1) = \psi((\lambda\alpha.\W_{\W_{\alpha+1}}-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(3,1,1)(2,2,1) = \psi((\lambda\alpha.\W_{\W_{\alpha+1}+1}-\Pi_1))\] \[(0)(1,1,1)(2,2,1)(3,1,1)(2,2,1)(3,1,1) = \psi((\lambda\alpha.\W_{\W_{\alpha+1}2}-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(3,1,1)(3,1,1) = \psi((\lambda\alpha.\W_{\W_{\alpha+1}^2}-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(3,1,1)(4,2,1) = \psi((\lambda\alpha.\W_{\W_{\alpha+2}}-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(3,2) = \psi((\lambda\alpha.\psi_{I_{\alpha+1}}(I_{\alpha+1})-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(3,2)(2,2,1) = \psi((\lambda\alpha.\psi_{I_{\alpha+1}}(I_{\alpha+1}+1)-\Pi_1))\] \[(0)(1,1,1)(2,2,1)(3,2)(2,2,1)(3,1,1) = \psi((\lambda\alpha.\psi_{I_{\alpha+1}}(I_{\alpha+1}+\W_{\alpha+1})-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(3,2)(2,2,1)(3,2) = \psi((\lambda\alpha.\psi_{I_{\alpha+1}}(I_{\alpha+1}2)-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(3,2)(3,1) = \psi((\lambda\alpha.\psi_{I_{\alpha+1}}(I_{\alpha+1}\W)-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(3,2)(3,2) = \psi((\lambda\alpha.\psi_{I_{\alpha+1}}(I_{\alpha+1}^2)-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(3,2)(4) = \psi((\lambda\alpha.\psi_{I_{\alpha+1}}(I_{\alpha+1}^\w)-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(3,2)(4,3) = \psi((\lambda\alpha.\psi_{I_{\alpha+1}}(\W_{I_{\alpha+1}+1})-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(3,2)(4,3,1)(5,4,1) = \psi((\lambda\alpha.\psi_{I_{\alpha+1}}(\lambda\alpha’.\W_{\alpha’+2}-\Pi_1 aft\alpha)-\Pi_0))\] \[(0)(1,1,1)(2,2,1)(3,2,1) = \psi((\lambda\alpha.I_{\alpha+1}-\Pi_1))\]