PPS Analysis 4——ε_(ω^(ω^(ε_0+1)+1))~ε_ε_(ε_0+ω^ω)
森系
上个分析说到,
\[0,1,0,2,0,4,4,3 = \e_{\w^{\w^{\e_0+1}+1}}\]接下来继续分析。
\[0,1,0,2,0,4,4,3,0,3,0,10 = \e_{\w^{\w^{\e_0+1}+\w^\w}}\] \[0,1,0,2,0,4,4,3,0,3,0,10,0,3,0,14 = \e_{\w^{\w^{\e_0+1}+\w^\w2}}\] \[0,1,0,2,0,4,4,3,0,3,0,10,9 = \e_{\w^{\w^{\e_0+1}+\w^{\w+1}}}\]这里的9和0,7,3,0,0,7相似。 注意这里0,1,0,2,0,4,4,3,0,3,0,10,10并不等于$\e_{\w^{\w^{\e_0+1}2}}$
\[0,1,0,2,0,4,4,3,0,3,0,10,9,0,0,9,0,15 = \e_{\w^{\w^{\e_0+1}+\w^{\w2}}}\] \[0,1,0,2,0,4,4,3,0,3,0,10,9,0,0,9,0,16 = \e_{\w^{\w^{\e_0+1}+\w^{\w^\w}}}\] \[0,1,0,2,0,4,4,3,0,3,0,10,9,0,0,10 = \e_{\w^{\w^{\e_0+1}+\w^{\w^{\w+1}}}}\] \[0,1,0,2,0,4,4,3,0,3,0,10,9,0,11 = \e_{\w^{\w^{\e_0+1}+\w^{\w^{\w2}}}}\] \[0,1,0,2,0,4,4,3,0,3,0,10,9,0,12 = \e_{\w^{\w^{\e_0+1}+\w^{\w^{\w^\w}}}}\]12可参考上篇文章的06重复。
\[0,1,0,2,0,4,4,3,0,3,0,10,9,0,13 = \e_{\w^{\w^{\e_0+1}+\e_0}}\] \[0,1,0,2,0,4,4,3,0,3,0,10,9,0,13,0,3,0,17,16,0,20 = \e_{\w^{\w^{\e_0+1}+\e_0 2}}\] \[0,1,0,2,0,4,4,3,0,3,0,10,9,0,13,9 = \e_{\w^{\w^{\e_0+1}2}}\] \[0,1,0,2,0,4,4,3,0,3,0,10,9,0,13,9,0,0,9 = \e_{\w^{\w^{\e_0+2}}}\] \[0,1,0,2,0,4,4,3,0,3,0,10,9,0,13,9,0,0,9,0,19= \e_{\w^{\w^{\e_0+\w^{\w}}}}\] \[0,1,0,2,0,4,4,3,0,3,0,10,9,0,13,9,0,0,13= \e_{\w^{\w^{\e_0+\w^{\w+1}}}}\] \[0,1,0,2,0,4,4,3,0,3,0,10,9,0,13,9,0,14= \e_{\w^{\w^{\e_0+\w^{\w2}}}}\] \[0,1,0,2,0,4,4,3,0,3,0,10,9,0,13,9,0,16= \e_{\w^{\w^{\e_0 2}}}\] \[0,1,0,2,0,4,4,3,0,3,0,10,10= \e_{\w^{\w^{\w^{\e_0+1}}}}\] \[0,1,0,2,0,4,4,3,0,3,0,10,10,3,0,3,0,16,16 = \e_{\w^{\w^{\w^{\e_0+1}}2}}\] \[0,1,0,2,0,4,4,3,0,4 = \e_{\w^{\w^{\w^{\e_0+1}+1}}}\]这里的04存在一个短暂的提升。
\[0,1,0,2,0,4,4,3,0,4,3,0,0,3,0,13 = \e_{\w^{\w^{\w^{\e_0+1}+1}+\w}}\] \[0,1,0,2,0,4,4,3,0,4,3,0,0,4 = \e_{\w^{\w^{\w^{\e_0+1}+2}}}\]这里的4是二指数塔+1
\[0,1,0,2,0,4,4,3,0,4,3,0,9 = \e_{\w^{\w^{\w^{\e_0+1}+\w}}}\] \[0,1,0,2,0,4,4,3,0,4,3,0,10 = \e_{\w^{\w^{\w^{\e_0+1}+\w^{\w}}}}\] \[0,1,0,2,0,4,4,3,0,4,3,0,11 = \e_{\w^{\w^{\w^{\e_0+1}+\e_0}}}\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,0,4,3,0,16 = \e_{\w^{\w^{\w^{\e_0+1}+\e_0 2}}}\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,9 = \e_{\w^{\w^{\w^{\e_0+1}2}}}\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,17 = \e_{\w^{\w^{\w^{\e_0+1}2}+\w^{\w}}}\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18 = \e_{\w^{\w^{\w^{\e_0+1}2}+\w^{\w^{\w}}}}\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,0,4 = \e_{\w^{\w^{\w^{\e_0+1}2+1}}}\]这里09重复04
\[0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,9 = \e_{\w^{\w^{\w^{\e_0+2}}}}\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,3,0,18,9,3,0,0,3,0,25,9 = \e_{\w^{\w^{\w^{\e_0+3}}}}\]这里的9是三指数塔+1,25是障眼法。
\[0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,11 = \e_{\w^{\w^{\w^{\e_0+\w}}}}\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,12 = \e_{\w^{\w^{\w^{\e_0+\w^{\w}}}}}\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,0,14 = \e_{\w^{\w^{\w^{\e_0 2}}}}\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,0,3,0,20,9,3,0,23 = \e_{\w^{\w^{\w^{\e_0 3}}}}\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,0,11 = \e_{\w^{\w^{\w^{\w^{\e_0+1}}}}}\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,0,11,9,3,0,0,11 = \e_{\w^{\w^{\w^{\w^{\e_0+2}}}}}\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,0,11,9,3,0,21 = \e_{\w^{\w^{\w^{\w^{\e_0 2}}}}}\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,12 = \e_{\w^{\w^{\w^{\w^{\w^{\e_0+1}}}}}}\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13= \e_{\w^{\w^{\w^{\w^{\w^{\w^{\e_0+1}}}}}}}\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,12= \e_{\w^{\w^{\w^{\w^{\w^{\w^{\e_0+1}+1}}}}}}\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,12,9,3,0,24= \e_{\w^{\w^{\w^{\w^{\w^{\w^{\e_0+1}+\e_0}}}}}}\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,12,9,3,0,24,0,0,12,9,3,0,31= \e_{\w^{\w^{\w^{\w^{\w^{\w^{\e_0+1}+\e_0 2}}}}}}\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,12,9,3,0,24,0,22= \e_{\w^{\w^{\w^{\w^{\w^{\w^{\e_0+1}2}}}}}}\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,12,9,3,0,24,0,23= \e_{\w^{\w^{\w^{\w^{\w^{\w^{\w^{\e_0+1}}}}}}}}\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,13= \e_{\w^{\w^{\w^{\w^{\w^{\w^{\w^{\e_0+1}+1}}}}}}}\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,13,3,0,0,13= \e_{\w^{\w^{\w^{\w^{\w^{\w^{\w^{\w^{\e_0+1}+1}+1}}}}}}}\]这里的层数很多,0,1,0,2,0,4,3,0,6,0,6,0,6的一个相似结构。
\[0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,0,18= (0)(1,1)(2)(3,1)(3,1)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,18,3,0,0,13,3,0,25= (0)(1,1)(2)(3,1)(3,1)(3,1)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,18,3,0,18= (0)(1,1)(2)(3,1)(4)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,13,3,0,19= (0)(1,1)(2)(3,1)(4)(5)(6)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,14= (0)(1,1)(2)(3,1)(4)(5)(6)(5)\]这里有圣诞树现象
\[0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,14,0,14= (0)(1,1)(2)(3,1)(4)(5)(6)(7)(6)(5)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,14,0,14,0,14,0,14= (0)(1,1)(2)(3,1)(4)(5)(6)(7)(8)(7)(6)(5)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,15= (0)(1,1)(2)(3,1)(4)(5,1)\]🎄🎄🎄
由于太难分析,我们先看一下部分提升的展开链。
首先是0102002
0102002
010200107
010200106
0102001001…
然后再看0102
0102
010101….
可以看到,两个式子的展开,0102002多出了两层,这也就导致了圣诞树现象。
🎄🎄🎄🎄🎄🎄
\[0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,15,0,4= (0)(1,1)(2)(3,1)(4)(5,1)(3)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,9,3,0,15,9= (0)(1,1)(2)(3,1)(4)(5,1)(3)(4,1)(5)(6,1)(4)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10= (0)(1,1)(2)(3,1)(4)(5,1)(3)(4,1)(5)(6,1)(4)(5,1)(6)(7,1)(5)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,9= (0)(1,1)(2)(3,1)(4)(5,1)(3)(4,1)(5)(6,1)(4)(5,1)(6)(7,1)(5)(4)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,9,3,0,18,17= (0)(1,1)(2)(3,1)(4)(5,1)(3)(4,1)(5)(6,1)(4)(5,1)(6)(7,1)(5)(4)(5,1)(6)(7,1)(5)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10= (0)(1,1)(2)(3,1)(4)(5,1)(3)(4,1)(5)(6,1)(4)(5,1)(6)(7,1)(5)(5)\]这里的00(10)有圣诞树
\[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,0,9,3,0,21,20,0,0,0,9,3,0,29,28= (0)(1,1)(2)(3,1)(4)(5,1)(3)(4,1)(5)(6,1)(4)(5,1)(6)(7,1)(5)(5)(4)(5,1)(6)(7,1)(5)(4)(5,1)(6)(7,1)(5)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,0,9,3,0,21,20,0,0,19= (0)(1,1)(2)(3,1)(4)(5,1)(3)(4,1)(5)(6,1)(4)(5,1)(6)(7,1)(5)(5)(4)(5,1)(6)(7,1)(5)(5)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,0,9,3,0,21,20,0,0,19,3,0,26= (0)(1,1)(2)(3,1)(4)(5,1)(3)(4,1)(5)(6,1)(4)(5,1)(6)(7,1)(5)(6)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,0,9,3,0,21,20,0,0,19,3,0,28= (0)(1,1)(2)(3,1)(4)(5,1)(3)(4,1)(5)(6,1)(4)(5,1)(6)(7,1)(5)(6,1)\]应用第一层地府结构
\[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,0,9,3,0,21,20,0,0,19,3,0,28,27= (0)(1,1)(2)(3,1)(4)(5,1)(3)(4,1)(5)(6,1)(4)(5,1)(6)(7,1)(5)(6,1)(7)(8,1)(6)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,0,9,3,0,21,20,0,0,20= (0)(1,1)(2)(3,1)(4)(5,1)(3)(4,1)(5)(6,1)(4)(5,1)(6)(7,1)(5)(6,1)(7)(8,1)(6)(6)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,0,10= (0)(1,1)(2)(3,1)(4)(5,1)(3)(4,1)(5)(6,1)(4)(5,1)(6)(7,1)(5)(6,1)(7)(8,1)(6)(6)(5)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,0,10,0,0,9,3,0,24,23,0,0,23= (0)(1,1)(2)(3,1)(4)(5,1)(3)(4,1)(5)(6,1)(4)(5,1)(6)(7,1)(5)(6,1)(7)(8,1)(6)(6)(5)(4)(5,1)(6)(7,1)(5)(6,1)(7)(8,1)(6)(6)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,0,10,0,0,9,3,0,24,23,0,0,23,0,0,22= (0)(1,1)(2)(3,1)(4)(5,1)(3)(4,1)(5)(6,1)(4)(5,1)(6)(7,1)(5)(6,1)(7)(8,1)(6)(6)(5)(4)(5,1)(6)(7,1)(5)(6,1)(7)(8,1)(6)(6)(5)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,0,10,0,0,9,3,0,24,23,0,0,23,0,0,22,0,0,22= (0)(1,1)(2)(3,1)(4)(5,1)(3)(4,1)(5)(6,1)(4)(5,1)(6)(7,1)(5)(6,1)(7)(8,1)(6)(6)(5)(5)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,0,10,0,0,9,3,0,24,23,0,0,23,0,0,22,3,0,32= (0)(1,1)(2)(3,1)(4)(5,1)(3)(4,1)(5)(6,1)(4)(5,1)(6)(7,1)(5)(6,1)(7)(8,1)(6)(6)(5)(6)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,0,10,0,0,9,3,0,24,23,0,0,23,0,0,22,3,0,34= (0)(1,1)(2)(3,1)(4)(5,1)(3)(4,1)(5)(6,1)(4)(5,1)(6)(7,1)(5)(6,1)(7)(8,1)(6)(6)(5)(6,1)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,0,10,0,0,9,3,0,24,23,0,0,23,0,0,22,3,0,34,33= (0)(1,1)(2)(3,1)(4)(5,1)(3)(4,1)(5)(6,1)(4)(5,1)(6)(7,1)(5)(6,1)(7)(8,1)(6)(6)(5)(6,1)(7)(8,1)(6)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,0,10,0,0,9,3,0,24,23,0,0,23,0,0,22,3,0,34,33,0,0,33= (0)(1,1)(2)(3,1)(4)(5,1)(3)(4,1)(5)(6,1)(4)(5,1)(6)(7,1)(5)(6,1)(7)(8,1)(6)(7,1)(8)(9,1)(7)(7)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,0,10,0,0,9,3,0,24,23,0,0,23,0,0,23= (0)(1,1)(2)(3,1)(4)(5,1)(3)(4,1)(5)(6,1)(4)(5,1)(6)(7,1)(5)(6,1)(7)(8,1)(6)(7,1)(8)(9,1)(7)(7)(6)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,0,10,0,0,10= (0)(1,1)(2)(3,1)(4)(5,1)(3)(4,1)(5)(6,1)(4)(5,1)(6)(7,1)(5)(6,1)(7)(8,1)(6)(7,1)(8)(9,1)(7)(7)(6)(5)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,0,10,0,0,10,0,0,10= (0)(1,1)(2)(3,1)(4)(5,1)(3)(4,1)(5)(6,1)(4)(5,1)(6)(7,1)(5)(6,1)(7)(8,1)(6)(7,1)(8)(9,1)(7)(8,1)(9)(10,1)(8)(8)(7)(6)(5)\]这里也有圣诞树现象,而且变得更怪异了 \(0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,0,10,0,0,10,0,0,10= \e_{\w^{\w^{\w^{\w^{\w^{\w^{\e_{\e_0}+2}+1}+1}+1}}}}\)
\[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,16= (0)(1,1)(2)(3,1)(4)(5,1)(3,1)\]这种圣诞树我们称为2类圣诞树($\w^{\w^{\w^{\w^{\w+2}+1}+1}}$),之前的圣诞树($\w^{\w^{\w^{\w^{\w+1}+1}+1}}$)我们称为1类圣诞树。、 2类圣诞树产生的原因可能是11,10,0,0,10中的两个10.
\[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,16,0,0,10,0,21= (0)(1,1)(2)(3,1)(4)(5,1)(3,1)(3,1)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,16,0,16= (0)(1,1)(2)(3,1)(4)(5,1)(3,1)(4)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17= (0)(1,1)(2)(3,1)(4)(5,1)(3,1)(4)(5)\]🎄
🎄🎄🎄🎄🎄🎄🎄