PPS Analysis 7——ε_ε_ε_ε_ε_0~
🎄系
上个分析说到,
\[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21= (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)\]接下来继续🎄🎄🎄🎄🎄🎄🎄🎄🎄🎄。
🎄🎄🎄🎄🎄🎄🎄🎄🎄🎄🎄🎄🎄🎄🎄🎄🎄🎄🎄🎄🎄🎄
\[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(6)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,0,21 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(6)(7)\]这里我们需要花点时间重新构造(6)(7,1)(8)(9,1)。
\[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,22 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(6)(7)(8)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,22,18,9,3,0,0,21 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(6)(7)(8)(7)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,22,18,9,3,0,0,21,18,9,3,0,0,21 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(6)(7)(8)(7)(7)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,22,18,9,3,0,0,21,18,9,3,0,33 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(6)(7)(8)(7)(8)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,22,18,9,3,0,22= (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(6)(7)(8)(8)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,23= (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(6)(7)(8)(9)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,23,9,3,0,22 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(6)(7)(8)(9)(8)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,23,9,3,0,22,18,9,3,0,32 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(6)(7)(8)(9)(10)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,23,9,3,0,23 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(6)(7)(8)(9)(10)(9)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,24 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(6)(7,1)\]这里的情况类似于0 0 13 0 18
\[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,24,3,0,22 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(6)(7,1)(7)\]22是(7)形式
\[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,24,3,0,22,18,9,3,0,30 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(6)(7,1)(7)(8)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,24,3,0,22,18,9,3,0,32 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(6)(7,1)(7)(8,1)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,24,3,0,23 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(6)(7,1)(7)(8,1)(8)\]有一个圣诞树形式
\[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,24,3,0,23,9,3,0,30 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(6)(7,1)(7,1)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,25 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(6)(7,1)(8)(9,1)\]930(24)变930(25)从(6)(7,1)变(6)(7,1)(8)(9,1)
\[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,25,0,23,9,3,0,29 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(7,1)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,25,0,23,9,3,0,31 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(7,1)(8)(9,1)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,25,0,24 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(8)\]🎄🎄
\[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,25,0,24,3,0,0,23,9,3,0,33 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(8)(7,1)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,25,0,24,3,0,0,23,9,3,0,35 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(8)(7,1)(8)(9,1)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,25,0,24,3,0,0,23,9,3,0,35,0,0,23,9,3,0,42 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(8)(7,1)(8)(9,1)(7,1)(8)(9,1) = \e_{\e_{\e_{\e_{\e_0(\w+2)}}}}\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,25,0,24,3,0,0,23,9,3,0,35,0,33 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(8)(7,1)(8)(9,1)(8)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,25,0,24,3,0,0,23,9,3,0,35,0,33,9,3,0,39 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(8)(9)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,25,0,24,3,0,0,23,9,3,0,35,0,33,9,3,0,41 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(8)(9,1)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,25,0,24,3,0,0,23,9,3,0,35,0,34 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(9)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,25,0,24,3,0,0,24 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(9)(8) = \e_{\e_{\e_{\e_{\w^{\w^{\e_{0}+1}+1}}}}}\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,25,0,24,3,0,29 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(9,1)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,25,0,24,3,0,30 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(10)(11)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,25,0,25 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(10)(11)(10)\]这里25又是一个圣诞树个体
\[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,26 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(10)(11,1) = \e_{\e_{\e_{\e_{\e_{\e_{0}}}}}}\]至此已不可参考的任何此序数之后的PPS扽西资料。
由于在此之后没有资料可参考,因此后面的森系可能不准确
这里我预测:类似于17xxxx18xxx19xxx 之类的结构可能是$\zeta_0$的表达。
Break 🎄
\[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,26,18 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(10)(11,1)(6)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,26,18,9,3,0,0,26 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(10)(11,1)(6)(7)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,26,18,9,3,0,27 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(10)(11,1)(6)(7)(8)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,26,18,9,3,0,29 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(10)(11,1)(6)(7,1)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,26,18,9,3,0,29,3,0,27 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(10)(11,1)(6)(7,1)(7)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,26,18,9,3,0,29,3,0,28 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(10)(11,1)(6)(7,1)(7)(8,1)(8)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,26,18,9,3,0,29,3,0,28,9,3,0,35 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(10)(11,1)(6)(7,1)(7,1)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,26,18,9,3,0,29,3,0,28,9,3,0,36 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(10)(11,1)(6)(7,1)(8)(9,1)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,26,18,9,3,0,29,3,0,29 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(10)(11,1)(6)(7,1)(8)(9,1)(10)(11)(10)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,26,18,9,3,0,30 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(10)(11,1)(6)(7,1)(8)(9,1)(10)(11,1)\]至此我们成功再次构造出了(6)(7,1)(8)(9,1)(10)(11,1)
\[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,26,18,9,3,0,30,0,0,26,18,9,3,0,38 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(10)(11,1)(6)(7,1)(8)(9,1)(10)(11,1)(6)(7,1)(8)(9,1)(10)(11,1)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,26,18,9,3,0,30,0,27 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(10)(11,1)(7)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,26,18,9,3,0,30,0,28,9,3,0,34 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(10)(11,1)(7,1)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,26,18,9,3,0,30,0,28,9,3,0,35,3,0,34 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(10)(11,1)(7,1)(8)(9,1)(8)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,26,18,9,3,0,30,0,28,9,3,0,35,3,0,34,9,3,0,41 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(10)(11,1)(7,1)(8)(9,1)(9,1)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,26,18,9,3,0,30,0,28,9,3,0,35,3,0,34,9,3,0,42 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(10)(11,1)(7,1)(8)(9,1)(10)(11)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,26,18,9,3,0,30,0,28,9,3,0,35,3,0,35 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(10)(11,1)(7,1)(8)(9,1)(10)(11)(10)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,26,18,9,3,0,30,0,28,9,3,0,36 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(10)(11,1)(7,1)(8)(9,1)(10)(11,1)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,26,18,9,3,0,30,0,29 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(10)(11,1)(8)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,26,18,9,3,0,30,0,29,3,0,0,28,9,3,0,38 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(10)(11,1)(8)(7,1)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,26,18,9,3,0,30,0,29,3,0,0,28,9,3,0,40 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(10)(11,1)(8)(7,1)(8)(9,1)(10)(11,1)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,26,18,9,3,0,30,0,29,3,0,0,28,9,3,0,40,0,38 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(10)(11,1)(8)(7,1)(8)(9,1)(10)(11,1)(8)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,26,18,9,3,0,30,0,29,3,0,0,28,9,3,0,40,0,39 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(10)(11,1)(8)(7,1)(8)(9,1)(10)(11,1)(9)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,26,18,9,3,0,30,0,29,3,0,0,29 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(10)(11,1)(8)(7,1)(8)(9,1)(10)(11,1)(8)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,26,18,9,3,0,30,0,29,3,0,34 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(10)(11,1)(9,1)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,26,18,9,3,0,30,0,30 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(10)(11,1)(9,1)(10)(11)(10)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,26,18,9,3,0,31 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(10)(11,1)(9,1)(10)(11,1)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,18,9,3,0,26,18,9,3,0,31,18,9,3,0,36 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(10)(11,1)(9,1)(10)(11,1)(9,1)(10)(11,1)\] \[0,1,0,2,0,4,4,3,0,4,3,0,11,10,0,0,10,0,17,9,3,0,21,19 = (0)(1,1)(2)(3,1)(4)(5,1)(6)(7,1)(8)(9,1)(10)(11,1)(10) = \e_{\e_{\e_{\e_{\e_{\w^{\e_{0}+1}}}}}}\]🎄
🎄🎄🎄🎄🎄🎄🎄